Latest developments in two-dimensional molybdenum disulfide-based multimodal most cancers theranostics | Journal of Nanobiotechnology

  • Guo J, Huang L. Membrane-core nanoparticles for most cancers nanomedicine. Adv Drug Deliv Rev. 2020;156:23–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caballero D, Abreu CM, Lima AC, Neves NN, Reis RL, Kundu SC. Precision biomaterials in most cancers theranostics and modelling. Biomaterials. 2022;280: 121299.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang RH, Gao W, Zhang L. Concentrating on medication to tumours utilizing cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20:33–48.

    Article 
    PubMed 

    Google Scholar
     

  • Tagde P, Najda A, Nagpal Ok, Kulkarni GT, Shah M, Ullah O, Balant S, Rahman MH. Nanomedicine-based supply methods for breast most cancers remedy and administration. Int J Mol Sci. 2022;23:89.

    Article 

    Google Scholar
     

  • Gaikwad HK, Tsvirkun D, Ben-Nun Y, Merquiol E, Popovtzer R, Blum G. Molecular imaging of most cancers utilizing X-ray computed tomography with protease focused iodinated activity-based probes. Nano Lett. 2018;18:1582–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Good nanoparticles for most cancers remedy. Sign Transduct Goal Ther. 2023;8:418.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuang F, Hui T, Chen Y, Qiu M, Gao X. Put up-graphene 2D supplies: constructions, properties, and most cancers remedy purposes. Adv Healthc Mater. 2024;13: e2302604.

    Article 
    PubMed 

    Google Scholar
     

  • He XP, Tian H. Photoluminescence architectures for illness analysis: from graphene to thin-layer transition metallic dichalcogenides and oxides. Small. 2016;12:144–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Decuzzi P, Pasqualini R, Arap W, Ferrari M. Intravascular supply of particulate programs: does geometry actually matter? Pharm Res. 2009;26:235–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sethulekshmi AS, Saritha A, Joseph Ok, Aprem AS, Sisupal SB. MoS(2) based mostly nanomaterials: Superior antibacterial brokers for future. J Management Launch. 2022;348:158–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Zhang D, Liu J, Wang J, Lu Y, Zheng J, Li B, Jia L. Functionalized MoS(2)-erlotinib produces hyperthermia underneath NIR. J Nanobiotechnology. 2019;17:76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng S, Zhang Y, Wang H, Wang L, Kong T, Zhang H, Meng S. Latest advances on TMDCs for medical analysis. Biomaterials. 2021;269: 120471.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Sui L, Huang J, Miao L, Nie Y, Wang Ok, Yang Z, Huang Q, Gong X, Nan Y, Ai Ok. MoS(2)-based nanocomposites for most cancers analysis and remedy. Bioact Mater. 2021;6:4209–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen F, Luo Y, Liu X, Zheng Y, Han Y, Yang D, Wu S. 2D Molybdenum sulfide-based supplies for photo-excited antibacterial utility. Adv Healthc Mater. 2022;11: e2200360.

    Article 
    PubMed 

    Google Scholar
     

  • Mphuthi N, Sikhwivhilu L, Ray SS. Functionalization of 2D MoS(2) nanosheets with numerous metallic and metallic oxide nanostructures: their properties and utility in electrochemical sensors. Biosensors (Basel). 2022;12:56.


    Google Scholar
     

  • Huang YL, Zheng YJ, Track Z, Chi D, Wee ATS, Quek SY. The organic-2D transition metallic dichalcogenide heterointerface. Chem Soc Rev. 2018;47:3241–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang QH, Kalantar-Zadeh Ok, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metallic dichalcogenides. Nat Nanotechnol. 2012;7:699–712.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou SS, Kaehr B, Kim J, Foley BM, De M, Hopkins PE, Huang J, Brinker CJ, Dravid VP. Chemically exfoliated MoS2 as near-infrared photothermal brokers. Angew Chem Int Ed Engl. 2013;52:4160–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi J, Zhang H, Chen Z, Xu L, Zhang Z. A multi-functional nanoplatform for efficacy tumor theranostic purposes. Asian J Pharm Sci. 2017;12:235–49.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao L, Wang J, Su D, Zhang Y, Lu H, Yan X, Bai J, Gao Y, Lu G. The DNA controllable peroxidase mimetic exercise of MoS(2) nanosheets for establishing a sturdy colorimetric biosensor. Nanoscale. 2020;12:19420–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roy S, Deo KA, Singh KA, Lee HP, Jaiswal A, Gaharwar AK. Nano-bio interactions of 2D molybdenum disulfide. Adv Drug Deliv Rev. 2022;187: 114361.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Mansukhani ND, Guiney LM, Ji Z, Chang CH, Wang M, Liao YP, Track TB, Solar B, Li R, et al. Variations within the Toxicological Potential of 2D versus aggregated molybdenum disulfide within the lung. Small. 2015;11:5079–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar A, Sood A, Han SS. Molybdenum disulfide (MoS(2))-based nanostructures for tissue engineering purposes: prospects and challenges. J Mater Chem B. 2022;10:2761–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, Li Ok, Chen Y, Chen H, Ma M, Feng J, Zhao Q, Shi J. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and extremely environment friendly photothermal regression of tumor. Biomaterials. 2015;39:206–17.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang X, Wu J, Williams GR, Niu S, Qian Q, Zhu LM. Functionalized MoS(2)-nanosheets for focused drug supply and chemo-photothermal remedy. Colloids Surf B Biointerfaces. 2019;173:101–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu L, Wang C, Li Y. Iron oxide nanoparticle focusing on mechanism and its utility in tumor magnetic resonance imaging and remedy. Nanomedicine (Lond). 2022;17:1567–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devasena T, Francis AP, Ramaprabhu S. Toxicity of Graphene: An Replace. Rev Environ Contam Toxicol. 2021;259:51–76.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Zhang W. Synthesis of black phosphorus and its purposes. Supplies At present Physics. 2024;43: 101396.

    Article 
    CAS 

    Google Scholar
     

  • Roy S, Zhang X, Puthirath AB, Meiyazhagan A, Bhattacharyya S, Rahman MM, Babu G, Susarla S, Saju SK, Tran MK, et al. Construction, properties and purposes of two-dimensional hexagonal boron nitride. Adv Mater. 2021;33:2101589.

    Article 
    CAS 

    Google Scholar
     

  • Ghosh S, Lai J-Y. An perception into the twin function of MoS2-based nanocarriers in anticancer drug supply and remedy. Acta Biomater. 2024;179:36–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar J, Li X, Guo W, Zhao M, Fan X, Dong Y, Xu C, Deng J, Fu Y. Synthesis Strategies of Two-Dimensional MoS2. A Transient Assessment. 2017;7:198.


    Google Scholar
     

  • Pourmadadi M, Tajiki A, Hosseini SM, Samadi A, Abdouss M, Daneshnia S, Yazdian F. A complete evaluation of synthesis, construction, properties, and functionalization of MoS2; emphasis on drug supply, photothermal remedy, and tissue engineering purposes. J Drug Deliv Sci Technol. 2022;76: 103767.

    Article 

    Google Scholar
     

  • Wang H, Li C, Fang P, Zhang Z, Zhang JZ. Synthesis, properties, and optoelectronic purposes of two-dimensional MoS(2) and MoS(2)-based heterostructures. Chem Soc Rev. 2018;47:6101–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Wu J, Yin Z, Zhang H. Preparation and purposes of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets. Acc Chem Res. 2014;47:1067–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grayfer ED, Kozlova MN, Fedorov VE. Colloidal 2D nanosheets of MoS(2) and different transition metallic dichalcogenides by way of liquid-phase exfoliation. Adv Colloid Interface Sci. 2017;245:40–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu C, Luo M, Ge Y, Huang Y, Zhao Q, Zhou Y, Xu X. Layer-Dependent Nonlinear Optical Properties of WS(2), MoS(2), and Bi(2)S(3) Movies Synthesized by Chemical Vapor Deposition. ACS Appl Mater Interfaces. 2022;14:2390–400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong G, Li L, Zhu Ok, Yan J, Wang G, Cao D. Solvent Induced Activation Response of MoS(2) Nanosheets inside Nitrogen/Sulfur-Codoped Carbon Community Boosting Sodium Ion Storage. Small. 2023;19: e2208291.

    Article 
    PubMed 

    Google Scholar
     

  • Yadav V, Roy S, Singh P, Khan Z, Jaiswal A. 2D MoS(2) -based nanomaterials for therapeutic, bioimaging, and biosensing purposes. Small. 2019;15: e1803706.

    Article 
    PubMed 

    Google Scholar
     

  • Mouloua D, Kotbi A, Deokar G, Kaja Ok, El Marssi M, El Khakani MA, Jouiad M. Latest Progress within the Synthesis of MoS(2) Skinny Movies for Sensing, Photovoltaic and Plasmonic Functions: A Assessment. Supplies (Basel). 2021;14:9.

    Article 

    Google Scholar
     

  • Li X, Shan J, Zhang W, Su S, Yuwen L, Wang L. Latest advances in synthesis and biomedical purposes of two-dimensional transition metallic dichalcogenide nanosheets. Small. 2017;13:7834.


    Google Scholar
     

  • Li XL, Li TC, Huang S, Zhang J, Pam ME, Yang HY. Controllable synthesis of two-dimensional molybdenum disulfide (MoS(2) ) for energy-storage purposes. Chemsuschem. 2020;13:1379–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joensen P, Frindt RF, Morrison SR. Single-layer MoS2. Mater Res Bull. 1986;21:457–61.

    Article 
    CAS 

    Google Scholar
     

  • Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metallic dichalcogenide nanosheets. Nat Chem. 2013;5:263–75.

    Article 
    PubMed 

    Google Scholar
     

  • Yuwen L, Yu H, Yang X, Zhou J, Zhang Q, Zhang Y, Luo Z, Su S, Wang L. Speedy preparation of single-layer transition metallic dichalcogenide nanosheets through ultrasonication enhanced lithium intercalation. Chem Commun (Camb). 2016;52:529–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin L, Miao N, Wen Y, Zhang S, Ghosez P, Solar Z, Allwood DA. Sulfur-depleted monolayered molybdenum disulfide nanocrystals for superelectrochemical hydrogen evolution response. ACS Nano. 2016;10:8929–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anto Jeffery A, Nethravathi C, Rajamathi M. Two-dimensional nanosheets and layered hybrids of MoS2 and WS2 by way of exfoliation of ammoniated MS2 (M = Mo, W). J Phys Chem C. 2014;118:1386–96.

    Article 
    CAS 

    Google Scholar
     

  • Zhang W, Wang Y, Zhang D, Yu S, Zhu W, Wang J, Zheng F, Wang S, Wang J. A one-step strategy to the large-scale synthesis of functionalized MoS2 nanosheets by ionic liquid assisted grinding. Nanoscale. 2015;7:10210–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan G, Zhang S, Liu S, Cai Y, Low M, Teng CP, Phang IY, Cheng Y, Duei KL, Srinivasan BM, et al. Protein induces layer-by-layer exfoliation of transition metallic dichalcogenides. J Am Chem Soc. 2015;137:6152–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masoumi Z, Tayebi M, Lee BK. Ultrasonication-assisted liquid-phase exfoliation enhances photoelectrochemical efficiency in α-Fe(2)O(3)/MoS(2) photoanode. Ultrason Sonochem. 2021;72: 105403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Cao H, Xue Y, Li B, Cai W. Liquid-phase exfoliation of graphene: an outline on exfoliation media, strategies, and challenges. Nanomaterials (Basel). 2018;8:89.

    Article 

    Google Scholar
     

  • Ghasemi F, Mohajerzadeh S. Sequential solvent change technique for managed exfoliation of MoS(2) appropriate for phototransistor fabrication. ACS Appl Mater Interfaces. 2016;8:31179–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cunningham G, Lotya M, Cucinotta CS, Sanvito S, Bergin SD, Menzel R, Shaffer MS, Coleman JN. Solvent exfoliation of transition metallic dichalcogenides: dispersibility of exfoliated nanosheets varies solely weakly between compounds. ACS Nano. 2012;6:3468–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldie SJ, Degiacomi MT, Jiang S, Clark SJ, Erastova V, Coleman KS. Identification of graphene dispersion brokers by way of molecular fingerprints. ACS Nano. 2022;16:16109–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayán-Varela M, Pérez-Vidal Ó, Paredes JI, Munuera JM, Villar-Rodil S, Díaz-González M, Fernández-Sánchez C, Silva VS, Cicuéndez M, Vila M, et al. Aqueous exfoliation of transition metallic dichalcogenides assisted by DNA/RNA nucleotides: catalytically lively and biocompatible nanosheets stabilized by acid-base interactions. ACS Appl Mater Interfaces. 2017;9:2835–45.

    Article 
    PubMed 

    Google Scholar
     

  • Seravalli L, Bosi M. A Assessment on Chemical Vapour Deposition of Two-Dimensional MoS(2) Flakes. Supplies (Basel). 2021;14:67.

    Article 

    Google Scholar
     

  • Ye Z, Tan C, Huang X, Ouyang Y, Yang L, Wang Z, Dong M. Rising MoS(2) Wafer-Scale Approach for Built-in Circuits. Nanomicro Lett. 2023;15:38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu T, Liu Z. 2D MoS(2) Nanostructures for Biomedical Functions. Adv Healthc Mater. 2018;7: e1701158.

    Article 
    PubMed 

    Google Scholar
     

  • Shi W, Track S, Zhang H. Hydrothermal artificial methods of inorganic semiconducting nanostructures. Chem Soc Rev. 2013;42:5714–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin H, Peng S, Guo S, Ma B, Lucherelli MA, Royer C, Ippolito S, Samorì P, Bianco A. 2D supplies and first human dendritic cells: a comparative cytotoxicity examine. Small. 2022;18: e2107652.

    Article 
    PubMed 

    Google Scholar
     

  • García-Carpintero S, Jehová González V, Frontiñán-Rubio J, Esteban-Arranz A, Vázquez E, Durán-Prado M. Screening the micronucleus assay for dependable estimation of the genotoxicity of graphene and different 2D supplies. Carbon. 2023;215: 118426.

    Article 

    Google Scholar
     

  • Voronina MV, Frolova AS, Kolesova EP, Kuldyushev NA, Parodi A, Zamyatnin AA Jr. The Intricate Steadiness between Life and Dying: ROS, cathepsins, and their interaction in cell demise and autophagy. Int J Mol Sci. 2024;25:8.

    Article 

    Google Scholar
     

  • Li J, Guiney LM, Downing JR, Wang X, Chang CH, Jiang J, Liu Q, Liu X, Mei KC, Liao YP, et al. Dissolution of 2D Molybdenum Disulfide Generates Differential Toxicity amongst Liver Cell Varieties In comparison with Non-Poisonous 2D Boron Nitride Results. Small. 2021;17: e2101084.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu G, Huang Y, Li J, Lu Y, Liu L, Du D, Xue Y. Power stage of exposures to low-dosed MoS(2) nanomaterials displays extra poisonous results in HaCaT keratinocytes. Ecotoxicol Environ Saf. 2022;242: 113848.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Xu J, Jiang X. DNA cleavage by chemically exfoliated molybdenum disulfide nanosheets. Environ Sci Technol. 2021;55:4037–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu Ok, Zou W, Fang Z, Wang Y, Bell S, Zhang X, Tian Z, Xu X, Ji B, Li D, et al. 2D MoS2 and BN Nanosheets Harm Mitochondria by way of Membrane Penetration. ACS Nano. 2023;17:4716–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz Peña N, Cherukula Ok, Even B, Ji DK, Razafindrakoto S, Peng S, Silva AKA, Ménard-Moyon C, Hillaireau H, Bianco A, et al. Decision of MoS(2) nanosheets-induced pulmonary irritation pushed by nanoscale intracellular transformation and extracellular-vesicle shuttles. Adv Mater. 2023;35: e2209615.

    Article 
    PubMed 

    Google Scholar
     

  • D’Souza AA, Shegokar R. Polyethylene glycol (PEG): a flexible polymer for pharmaceutical purposes. Knowledgeable Opin Drug Deliv. 2016;13:1257–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao J, Track G, Liu T, Yi X, Yang Ok, Cheng L, Liu Z. In vivo long-term biodistribution, excretion, and toxicology of pegylated transition-metal dichalcogenides MS(2) (M = Mo, W, Ti) Nanosheets. Adv Sci (Weinh). 2017;4:1600160.

    Article 
    PubMed 

    Google Scholar
     

  • Pathak R, Bhatt S, Punetha VD, Punetha M. Chitosan nanoparticles and based mostly composites as a biocompatible automobile for drug supply: A evaluation. Int J Biol Macromol. 2023;253: 127369.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin W, Yan L, Yu J, Tian G, Zhou L, Zheng X, Zhang X, Yong Y, Li J, Gu Z, Zhao Y. Excessive-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug supply for efficient most cancers remedy. ACS Nano. 2014;8:6922–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel D, Solanki J, Kher MM, Azagury A. A Assessment: Floor Engineering of Lipid-Primarily based Drug Supply Techniques. Small. 2024;9:e2401990.

    Article 

    Google Scholar
     

  • Xie M, Yang N, Cheng J, Yang M, Deng T, Li Y, Feng C. Layered MoS(2) nanosheets modified by biomimetic phospholipids: Enhanced stability and its synergistic remedy of most cancers with chemo-photothermal remedy. Colloids Surf B Biointerfaces. 2020;187: 110631.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morales-Cruz M, Delgado Y, Castillo B, Figueroa CM, Molina AM, Torres A, Milián M, Griebenow Ok. Good focusing on to enhance most cancers therapeutics. Drug Des Devel Ther. 2019;13:3753–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar R, Xiang J, Zhou Q, Piao Y, Tang J, Shao S, Zhou Z, Bae YH, Shen Y. The tumor EPR impact for most cancers drug supply: Present standing, limitations, and options. Adv Drug Deliv Rev. 2022;191: 114614.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolate A, Baradia D, Patil S, Vhora I, Kore G, Misra A. PEG – a flexible conjugating ligand for medication and drug supply programs. J Management Launch. 2014;192:67–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Good EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for most cancers remedy utilizing versatile focused methods. J Hematol Oncol. 2022;15:132.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heshmati Aghda N, Dabbaghianamiri M, Tunnell JW, Betancourt T. Design of good nanomedicines for efficient most cancers remedy. Int J Pharm. 2022;621: 121791.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mo C, Wang Z, Yang J, Ouyang Y, Mo Q, Li S, He P, Chen L, Li X. Rational meeting of RGD/MoS(2)/Doxorubicin nanodrug for focused drug supply, GSH-stimulus launch and chemo-photothermal synergistic antitumor exercise. J Photochem Photobiol B. 2022;233: 112487.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu T, Wang C, Gu X, Gong H, Cheng L, Shi X, Feng L, Solar B, Liu Z. Drug supply with PEGylated MoS2 nano-sheets for mixed photothermal and chemotherapy of most cancers. Adv Mater. 2014;26:3433–40.

    Article 
    PubMed 

    Google Scholar
     

  • Dong X, Yin W, Zhang X, Zhu S, He X, Yu J, Xie J, Guo Z, Yan L, Liu X, et al. Clever MoS(2) Nanotheranostic for Focused and Enzyme-/pH-/NIR-Responsive Drug Supply To Overcome Most cancers Chemotherapy Resistance Guided by PET Imaging. ACS Appl Mater Interfaces. 2018;10:4271–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moradi Kashkooli F, Soltani M, Souri M. Managed anti-cancer drug launch by way of superior nano-drug supply programs: Static and dynamic focusing on methods. J Management Launch. 2020;327:316–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moharil P, Wan Z, Pardeshi A, Li J, Huang H, Luo Z, Rathod S, Zhang Z, Chen Y, Zhang B, et al. Engineering a folic acid-decorated ultrasmall gemcitabine nanocarrier for breast most cancers remedy: Twin focusing on of tumor cells and tumor-associated macrophages. Acta Pharm Sin B. 2022;12:1148–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Li F, Zheng J, Li B, Zhang D, Jia L. Redox/NIR dual-responsive MoS(2) for synergetic chemo-photothermal remedy of most cancers. J Nanobiotechnology. 2019;17:78.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de la Encarnación C. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Adv Drug Deliv Rev. 2022;189: 114484.

    Article 
    PubMed 

    Google Scholar
     

  • Yang JD, Heimbach JK. New advances within the analysis and administration of hepatocellular carcinoma. BMJ. 2020;371: m3544.

    Article 
    PubMed 

    Google Scholar
     

  • Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS, Gambhir SS. Photoacoustic medical imaging Photoacoustics. 2019;14:77–98.

    PubMed 

    Google Scholar
     

  • Zhen X, Jiang X. Polymer-based activatable optical probes for tumor fluorescence and photoacoustic imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12: e1593.

    Article 
    PubMed 

    Google Scholar
     

  • Janib SM, Moses AS, MacKay JA. Imaging and drug supply utilizing theranostic nanoparticles. Adv Drug Deliv Rev. 2010;62:1052–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng X, Lei J, Ma L, Ouyang Q, Zeng Y, Liang H, Lei C, Li G, Tan L, Liu X, Yang C. Ultrasonic Interfacial Engineering of MoS(2) -Modified Zn Single-Atom Catalysts for Environment friendly Osteomyelitis Sonodynamic Ion Remedy. Small. 2022;18: e2105775.

    Article 
    PubMed 

    Google Scholar
     

  • Luo Z, Li J, Li Y, Wu D, Zhang L, Ren X, He C, Zhang Q, Gu M, Solar X. Band Engineering Induced Conducting 2H-Part MoS2 by PdSRe Websites Modification for Hydrogen Evolution Response. Adv Power Mater. 2022;12:2103823.

    Article 
    CAS 

    Google Scholar
     

  • Refaat A, Yap ML, Pietersz G, Walsh APG, Zeller J, Del Rosal B, Wang X, Peter Ok. In vivo fluorescence imaging: success in preclinical imaging paves the way in which for medical purposes. J Nanobiotechnology. 2022;20:450.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Chen G, Zhang Y, Wu F, Wang Q. Superior fluorescence imaging know-how within the near-infrared-II window for biomedical purposes. J Am Chem Soc. 2020;142:14789–804.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Y, Chen Q, Pan X, Zhang J. Perception into fluorescence imaging and bioorthogonal reactions in organic evaluation. Prime Curr Chem (Cham). 2021;379:10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi Y, Wang N, Xu Q, Li H, Zhou P, Lu X, Zhao G. A inexperienced path to fabricate MoS2 nanosheets in water-ethanol-CO2. Chem Commun (Camb). 2015;51:6726–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan L, Chen D, Yao Y, Peng X, Wu J, Li Y, Ping J, Ying Y. Part-dependent fluorescence quenching effectivity of MoS(2) nanosheets and their purposes in multiplex goal biosensing. ACS Appl Mater Interfaces. 2018;10:42009–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Xu M, Wang Ok, Chen Z. Secure mesoporous silica nanoparticles integrated with MoS2 and AIE for focused fluorescence imaging and photothermal remedy of most cancers cells. Colloids Surf B Biointerfaces. 2019;174:324–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Solar X, Fu M, Liu X, Pang S, You Y, Liu X, Wang Y, Yan X, Ma X. Twin-source powered nanomotor with built-in features for most cancers photo-theranostics. Biomaterials. 2022;288: 121744.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Wang B, Li D, Zeng X, Tang X, Gao Q, Cai J, Cai HH. MoS(2) nanosheets with peroxidase mimicking exercise as viable dual-mode optical probes for dedication and imaging of intracellular hydrogen peroxide. Mikrochim Acta. 2018;185:287.

    Article 
    PubMed 

    Google Scholar
     

  • Li Y, Fu R, Duan Z, Zhu C, Fan D. Adaptive hydrogels based mostly on nanozyme with dual-enhanced triple enzyme-like actions for wound disinfection and mimicking antioxidant protection system. Adv Healthc Mater. 2022;11: e2101849.

    Article 
    PubMed 

    Google Scholar
     

  • Han X, Xu Ok, Taratula O, Farsad Ok. Functions of nanoparticles in biomedical imaging. Nanoscale. 2019;11:799–819.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia L, Ding L, Tian J, Bao L, Hu Y, Ju H, Yu JS. Aptamer loaded MoS2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic remedy. Nanoscale. 2015;7:15953–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Kang Q, Yang B, Chen B, He M, Hu B. A nanoprobe based mostly on molybdenum disulfide nanosheets and silver nanoclusters for imaging and quantification of intracellular adenosine triphosphate. Anal Chim Acta. 2020;1134:75–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He C, Zhu J, Zhang H, Qiao R, Zhang R. Photoacoustic imaging probes for theranostic purposes. Biosensors (Basel). 2022;12:89.


    Google Scholar
     

  • Gonzalez EA, Bell MAL. Photoacoustic imaging and characterization of bone in medication: overview, purposes, and outlook. Annu Rev Biomed Eng. 2023;25:207–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin L, Wang LV. The rising function of photoacoustic imaging in medical oncology. Nat Rev Clin Oncol. 2022;19:365–84.

    Article 
    PubMed 

    Google Scholar
     

  • Dhas N, Kudarha R, Garkal A, Ghate V, Sharma S, Panzade P, Khot S, Chaudhari P, Singh A, Paryani M, et al. Molybdenum-based hetero-nanocomposites for most cancers remedy, analysis and biosensing utility: Present development and future breakthroughs. J Management Launch. 2021;330:257–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Liu C, Hu D, Wang F, Wu H, Gong X, Liu X, Track L, Sheng Z, Zheng H. Single-Layer MoS2 nanosheets with amplified photoacoustic impact for extremely delicate photoacoustic imaging of orthotopic mind tumors. Adv Func Mater. 2016;26:8715–25.

    Article 
    CAS 

    Google Scholar
     

  • Teng CW, Huang V, Arguelles GR, Zhou C, Cho SS, Harmsen S, Lee JYK. Functions of indocyanine inexperienced in mind tumor surgical procedure: evaluation of medical proof and rising applied sciences. Neurosurg Focus. 2021;50:E4.

    Article 
    PubMed 

    Google Scholar
     

  • Liu C, Chen J, Zhu Y, Gong X, Zheng R, Chen N, Chen D, Yan H, Zhang P, Zheng H, et al. Extremely Delicate MoS(2)-Indocyanine Inexperienced Hybrid for Photoacoustic Imaging of Orthotopic Mind Glioma at Deep Website. Nanomicro Lett. 2018;10:48.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Suo Y, Shi H, Liu R, Wu F, Wang T, Ma L, Liu H, Cheng Z. Deep-tissue photothermal remedy utilizing laser illumination at NIR-IIa Window. Nanomicro Lett. 2020;12:38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, Kesharwani P. Latest advances in nanoparticles mediated photothermal remedy induced tumor regression. Int J Pharm. 2021;606: 120848.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Feng Y, Zhou X, Zhang Q, Nie W, Wang W, Zhang Y, He C. One-pot synthesis of MoS(2) nanoflakes with fascinating degradability for photothermal most cancers remedy. ACS Appl Mater Interfaces. 2017;9:17347–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu L, Zhao J, Guo Z, Liu Y, Chen H, Chen Z, He N. Functions of Aptamer-Sure Nanomaterials in Most cancers Remedy. Biosensors (Basel). 2021;11:8.


    Google Scholar
     

  • Pang B, Yang H, Wang L, Chen J, Jin L, Shen B. Aptamer modified MoS2 nanosheets utility in focused photothermal remedy for breast most cancers. Colloids Surf, A. 2021;608: 125506.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Smith S, Wang C. Photothermal attenuation of most cancers cell stemness, chemoresistance, and migration utilizing CD44-Focused MoS(2) Nanosheets. Nano Lett. 2023;23:1989–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu H, Tian Y, Yuan X, Wu H, Liu Q, Pestell RG, Wu Ok. The function of CD44 in epithelial-mesenchymal transition and most cancers improvement. Onco Targets Ther. 2015;8:3783–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Ye R, Feng R, Kang Y, Zhu X, Tour JM, Fang Z. Graphene quantum dots doping of MoS2 Monolayers. Adv Mater. 2015;27:5235–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Fu Y, Gu Z, Pan H, Zhou P, Gan Q, Yuan Y, Liu C. Multifunctional carbon dots for biomedical purposes: analysis, remedy, and theranostic. Small. 2024;20: e2303773.

    Article 
    PubMed 

    Google Scholar
     

  • Geng B, Qin H, Zheng F, Shen W, Li P, Wu Ok, Wang X, Li X, Pan D, Shen L. Carbon dot-sensitized MoS(2) nanosheet heterojunctions as extremely environment friendly NIR photothermal brokers for full tumor ablation at an ultralow laser publicity. Nanoscale. 2019;11:7209–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu R, Chen X, Li Z, Zhao G, Ding L, Chen L, Dai C, Chen Y, Zhang B. Liquid nanoparticles for nanocatalytic most cancers remedy. Adv Mater. 2023;35: e2306469.

    Article 
    PubMed 

    Google Scholar
     

  • Kumari A, Sahoo J, De M. 2D-MoS(2)-supported copper peroxide nanodots with enhanced nanozyme exercise: utility in antibacterial exercise. Nanoscale. 2023;15:19801–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Z, Gao Y, Wen L, Wang X, Feng J, Zhu C, Li D, Zhao M. Impact of MoS2-PEG nanozymes on tumor cell multiplication. Arab J Chem. 2023;16: 105240.

    Article 
    CAS 

    Google Scholar
     

  • Wang L, Zhang X, You Z, Yang Z, Guo M, Guo J, Liu H, Zhang X, Wang Z, Wang A, et al. A molybdenum disulfide nanozyme with charge-enhanced exercise for ultrasound-mediated cascade-catalytic tumor ferroptosis. Angew Chem Int Ed Engl. 2023;62: e202217448.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Yi W, Luo Y, Yang Ok, He L, Xu C, Deng L, He D. GSH-depleting and H(2)O(2)-self-supplying hybrid nanozymes for intensive catalytic antibacterial remedy by photothermal-augmented co-catalysis. Acta Biomater. 2023;155:588–600.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Yao H, Guo Y, Yang B, Shi J. Enhancing tumor catalytic remedy by co-catalysis. Angew Chem Int Ed Engl. 2022;61: e202200480.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ou R, Aodeng G, Ai J. Developments within the utility of the fenton response within the most cancers microenvironment. Pharmaceutics. 2023;15:8.

    Article 

    Google Scholar
     

  • Xiao J, Guo S, Wang D, An Q. Fenton-like response: current advances and new traits. Chemistry. 2024;30: e202304337.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, Li X, Huo M. Nanozymes-recent improvement and biomedical purposes. J Nanobiotechnology. 2022;20:92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi B, Zhang B, Zhang Y, Gu Y, Zheng C, Yan J, Chen W, Yan F, Ye J, Zhang H. Multifunctional gap-enhanced Raman tags for preoperative and intraoperative most cancers imaging. Acta Biomater. 2020;104:210–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenkrans ZT, Ferreira CA, Ni D, Cai W. Internally responsive nanomaterials for activatable multimodal imaging of most cancers. Adv Healthc Mater. 2021;10: e2000690.

    Article 
    PubMed 

    Google Scholar
     

  • Deng H, Zhang J, Yang Y, Yang J, Wei Y, Ma S, Shen Q. Chemodynamic and photothermal mixture remedy based mostly on dual-modified metal-organic framework for inducing tumor ferroptosis/pyroptosis. ACS Appl Mater Interfaces. 2022;14:24089–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burke BP, Cawthorne C, Archibald SJ. Multimodal nanoparticle imaging brokers: design and purposes. Philos Trans A Math Phys Eng Sci. 2017;89:375.


    Google Scholar
     

  • Tempany CM, Jayender J, Kapur T, Bueno R, Golby A, Agar N, Jolesz FA. Multimodal imaging for improved analysis and remedy of cancers. Most cancers. 2015;121:817–27.

    Article 
    PubMed 

    Google Scholar
     

  • Fu H, Liu W, Li J, Wu W, Zhao Q, Bao H, Zhou L, Zhu S, Kong J, Zhang H, Cai W. Excessive-Density-Nanotips-Composed 3D Hierarchical Au/CuS hybrids for delicate, signal-reproducible, and substrate-recyclable SERS Detection. Nanomaterials (Basel). 2022;8:12.


    Google Scholar
     

  • Shokrollahi H. Distinction brokers for MRI. Mater Sci Eng C Mater Biol Appl. 2013;33:4485–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin MH, Park EY, Han S, Jung HS, Keum DH, Lee GH, Kim T, Kim C, Kim KS, Yun SH, Hahn SK. Multimodal most cancers theranosis utilizing hyaluronate-conjugated molybdenum disulfide. Adv Healthc Mater. 2019;8: e1801036.

    Article 
    PubMed 

    Google Scholar
     

  • Li W, Rong P, Yang Ok, Huang P, Solar Ok, Chen X. Semimetal nanomaterials of antimony as extremely environment friendly agent for photoacoustic imaging and photothermal remedy. Biomaterials. 2015;45:18–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Xiu W, Xiao H, Li Y, Yang Ok, Yuwen L, Yang D, Weng L, Wang L. Fluorescence and ratiometric photoacoustic imaging of endogenous furin exercise through peptide functionalized MoS(2) nanosheets. Biomater Sci. 2021;9:8313–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meric-Bernstam F, Larkin J, Tabernero J, Bonini C. Enhancing anti-tumour efficacy with immunotherapy mixtures. Lancet. 2021;397:1010–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong YT, Cen Y, Xu L, Li SY, Cheng H. Latest progress in carrier-free nanomedicine for tumor phototherapy. Adv Healthc Mater. 2023;12: e2202307.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang C, Hu X, Jin L, Lin L, Lin H, Yang Z, Huang W. Strategic design of conquering hypoxia in tumor for superior photodynamic remedy. Adv Healthc Mater. 2023;12: e2300530.

    Article 
    PubMed 

    Google Scholar
     

  • Pucelik B, Sułek A, Barzowska A, Dąbrowski JM. Latest advances in methods for overcoming hypoxia in photodynamic remedy of most cancers. Most cancers Lett. 2020;492:116–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi Y, Yuan Y, Qian Z, Ma X, Yuan W, Track Y. Injectable and self-healing polysaccharide hydrogel loading molybdenum disulfide nanoflakes for synergistic photothermal-photodynamic remedy of breast most cancers. Macromol Biosci. 2022;22: e2200161.

    Article 
    PubMed 

    Google Scholar
     

  • Fusco L, Gazzi A, Peng G, Shin Y, Vranic S, Bedognetti D, Vitale F, Yilmazer A, Feng X, Fadeel B, et al. Graphene and different 2D supplies: a multidisciplinary evaluation to uncover the hidden potential as most cancers theranostics. Theranostics. 2020;10:5435–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Liu M, Zhang S, Xie X, Zhu Y, Liu T, Li J, Tu Z, Wen W. Development of CpG Supply Nanoplatforms by Functionalized MoS(2) nanosheets for enhancing antitumor immunity in head and neck squamous cell carcinoma. Small. 2023;19: e2300380.

    Article 
    PubMed 

    Google Scholar
     

  • Ma Z, Foda MF, Zhao Y, Han H. Multifunctional nanosystems with enhanced mobile uptake for tumor remedy. Adv Healthc Mater. 2022;11: e2101703.

    Article 
    PubMed 

    Google Scholar
     

  • Liu J, Lu Ok, Gao F, Zhao L, Li H, Jiang Y. Multifunctional MoS2 composite nanomaterials for drug supply and synergistic photothermal remedy in most cancers remedy. Ceram Int. 2022;48:22378–86.

    Article 
    CAS 

    Google Scholar
     

  • Raju GSR, Pavitra E, Varaprasad GL, Bandaru SS, Nagaraju GP, Farran B, Huh YS, Han Y-Ok. Nanoparticles mediated tumor microenvironment modulation: present advances and purposes. J Nanobiotechnol. 2022;20:274.

    Article 

    Google Scholar
     

  • Khalid A, Persano S, Shen H, Zhao Y, Blanco E, Ferrari M, Wolfram J. Methods for bettering drug supply: nanocarriers and microenvironmental priming. Knowledgeable Opin Drug Deliv. 2017;14:865–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nizzero S, Shen H, Ferrari M, Corradetti B. Immunotherapeutic transport oncophysics: area, time, and immune activation in most cancers. Tendencies Most cancers. 2020;6:40–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang S, Li D, Chen L, Zhou X, Fu L, You Y, You Z, Kang L, Li M, He C. Coupling metallic natural frameworks with molybdenum disulfide nanoflakes for focused most cancers theranostics. Biomater Sci. 2021;9:3306–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Imranul-haq M, Lai BF, Chapanian R, Kizhakkedathu JN. Affect of structure of excessive molecular weight linear and branched polyglycerols on their biocompatibility and biodistribution. Biomaterials. 2012;33:9135–47.

    Article 
    CAS 

    Google Scholar
     

  • Wang Ok, Chen Q, Xue W, Li S, Liu Z. Mixed chemo-photothermal antitumor remedy utilizing molybdenum disulfide modified with hyperbranched polyglycidyl. ACS Biomater Sci Eng. 2017;3:2325–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu S, Zhong Y, Nie C, Pan Y, Adeli M, Haag R. Co-delivery of doxorubicin and chloroquine by polyglycerol functionalized MoS2 nanosheets for environment friendly multidrug-resistant most cancers remedy. Macromol Biosci. 2021;21: e2100233.

    Article 
    PubMed 

    Google Scholar
     

  • Wang S, Wang Y, Jin Ok, Zhang B, Peng S, Nayak AK, Pang Z. Latest advances in erythrocyte membrane-camouflaged nanoparticles for the supply of anti-cancer therapeutics. Knowledgeable Opin Drug Deliv. 2022;19:965–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li JQ, Zhao RX, Yang FM, Qi XT, Ye PK, Xie M. An erythrocyte membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal remedy of breast most cancers. J Mater Chem B. 2022;10:2047–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murugan C, Lee H, Park S. Tumor-targeted molybdenum disulfide@barium titanate core-shell nanomedicine for twin photothermal and chemotherapy of triple-negative breast most cancers cells. J Mater Chem B. 2023;11:1044–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Bruce G, Childerhouse N, Keegan G, Mantovani G, Stolnik S. Biotin receptor-mediated intracellular supply of artificial polypeptide-protein complexes. J Management Launch. 2023;357:333–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Track X, Wang R, Gao J, Han X, Jin J, Lv C, Yu F. Development of a biotin-targeting drug supply system and its near-infrared theranostic fluorescent probe for real-time image-guided remedy of lung most cancers. Chin Chem Lett. 2022;33:1567–71.

    Article 
    CAS 

    Google Scholar
     

  • Chen Z, Wei X, Zheng Y, Zhang Z, Gu W, Liao W, Zhang H, Wang X, Liu J, Li H, Xu W. Focused co-delivery of curcumin and erlotinib by MoS(2) nanosheets for the mixture of synergetic chemotherapy and photothermal remedy of lung most cancers. J Nanobiotechnology. 2023;21:333.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shafiee M, Mohamadzade E, ShahidSales S, Khakpouri S, Maftouh M, Parizadeh SA, Hasanian SM, Avan A. Present Standing and views concerning the therapeutic potential of focusing on EGFR pathway by curcumin in lung most cancers. Curr Pharm Des. 2017;23:2002–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamauchi Y, Izumi Y, Yamamoto J, Nomori H. Coadministration of erlotinib and curcumin augmentatively reduces cell viability in lung most cancers cells. Phytother Res. 2014;28:728–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiu YJ, Yang JS, Tsai FJ, Chiu HY, Juan YN, Lo YH, Chiang JH. Curcumin suppresses cell proliferation and triggers apoptosis in vemurafenib-resistant melanoma cells by downregulating the EGFR signaling pathway. Environ Toxicol. 2022;37:868–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedrich M, Aigner A. Therapeutic siRNA: State-of-the-Artwork and Future Views. BioDrugs. 2022;36:549–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang XJ. Therapeutic siRNA: cutting-edge. Sign Transduct Goal Ther. 2020;5:101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Zhang T, Gao J. Biocompatible iron oxide nanoparticles for focused most cancers gene remedy: a evaluation. Nanomaterials (Basel). 2022;7:12.

    Article 

    Google Scholar
     

  • Stafford JM, Wyatt MD, McInnes C. Inhibitors of the PLK1 polo-box area: drug design methods and therapeutic alternatives in most cancers. Knowledgeable Opin Drug Discov. 2023;18:65–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kou Z, Wang X, Yuan R, Chen H, Zhi Q, Gao L, Wang B, Guo Z, Xue X, Cao W, Guo L. A promising gene supply system developed from PEGylated MoS2 nanosheets for gene remedy. Nanoscale Res Lett. 2014;9:587.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong L, Xing L, Zhou B, Du L, Shi X. Dendrimer-modified MoS(2) nanoflakes as a platform for combinational gene silencing and photothermal remedy of tumors. ACS Appl Mater Interfaces. 2017;9:15995–6005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Lu Z, Zhao X. Concentrating on Bcl-2 for most cancers remedy. Biochim Biophys Acta Rev Most cancers. 2021;1876: 188569.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang Q, Chen Y, Li X, Lengthy S, Shi Y, Yu Y, Wu W, Han L, Wang S. The function of PD-1/PD-L1 and utility of immune-checkpoint inhibitors in human cancers. Entrance Immunol. 2022;13: 964442.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu Ok. Mixture methods with PD-1/PD-L1 blockade: present advances and future instructions. Mol Most cancers. 2022;21:28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye H, Yan J, Ge C, Wu F, Zhu J, Yin M, Xie L, Zhou Z, Yin L. Tumoral/exosomal PD-L1 silencing reinforces delicate photothermal remedy by relieving systemic and native immunosuppression. Chem Eng J. 2024;483: 149093.

    Article 
    CAS 

    Google Scholar
     

  • He X, Zhang S, Tian Y, Cheng W, Jing H. Analysis progress of nanomedicine-based delicate photothermal remedy in tumor. Int J Nanomedicine. 2023;18:1433–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Y, Liao J, Cheng H, Yang Q, Yang H. Superior gene remedy system for the remedy of strong tumour: A evaluation. Mater At present Bio. 2024;27: 101138.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu X, Li S. Nanomaterials in tumor immunotherapy: new methods and challenges. Mol Most cancers. 2023;22:94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen W, Jiang M, Yu W, Xu Z, Liu X, Jia Q, Guan X, Zhang W. CpG-based nanovaccines for most cancers immunotherapy. Int J Nanomedicine. 2021;16:5281–99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rimassa L, Finn RS, Sangro B. Mixture immunotherapy for hepatocellular carcinoma. J Hepatol. 2023;79:506–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riley RS, June CH, Langer R, Mitchell MJ. Supply applied sciences for most cancers immunotherapy. Nat Rev Drug Discov. 2019;18:175–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han Q, Wang X, Jia X, Cai S, Liang W, Qin Y, Yang R, Wang C. CpG loaded MoS(2) nanosheets as multifunctional brokers for photothermal enhanced most cancers immunotherapy. Nanoscale. 2017;9:5927–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin Y, Zhuang Y, Dong X, Liu M. Improvement of CpG oligodeoxynucleotide TLR9 agonists in anti-cancer remedy. Knowledgeable Rev Anticancer Ther. 2021;21:841–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dongye Z, Li J, Wu Y. Toll-like receptor 9 agonists and mixture therapies: methods to modulate the tumour immune microenvironment for systemic anti-tumour immunity. Br J Most cancers. 2022;127:1584–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiao D, Li L, Liu L, Chen Y. Common and translational nanoparticulate CpG adjuvant. ACS Appl Mater Interfaces. 2022;14:50592–600.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanagata N. Construction-dependent immunostimulatory impact of CpG oligodeoxynucleotides and their supply system. Int J Nanomedicine. 2012;7:2181–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elmusrati A, Wang J, Wang CY. Tumor microenvironment and immune evasion in head and neck squamous cell carcinoma. Int J Oral Sci. 2021;13:24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farlow JL, Brenner JC, Lei YL, Chinn SB. Immune deserts in head and neck squamous cell carcinoma: A evaluation of challenges and alternatives for modulating the tumor immune microenvironment. Oral Oncol. 2021;120: 105420.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Y, Wang S, Li Y, Yuan C, Zhang J, Xu Z, Hu Y, Shi H, Wang S. Simultaneous glutamine metabolism and PD-L1 inhibition to reinforce suppression of triple-negative breast most cancers. J Nanobiotechnol. 2022;20:216.

    Article 
    CAS 

    Google Scholar
     

  • Schulte ML, Fu A, Zhao P, Li J, Geng L, Smith ST, Kondo J, Coffey RJ, Johnson MO, Rathmell JC, et al. Pharmacological blockade of ASCT2-dependent glutamine transport results in antitumor efficacy in preclinical fashions. Nat Med. 2018;24:194–202.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edwards DN, Ngwa VM, Raybuck AL, Wang S, Hwang Y, Kim LC, Cho SH, Paik Y, Wang Q, Zhang S, et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte exercise in triple-negative breast most cancers. J Clin Make investments. 2021;78:131.


    Google Scholar
     

  • Xu S, Zhang P, Heing-Becker I, Zhang J, Tang P, Bej R, Bhatia S, Zhong Y, Haag R. Twin tumor- and subcellular-targeted photodynamic remedy utilizing glucose-functionalized MoS(2) nanoflakes for multidrug-resistant tumor ablation. Biomaterials. 2022;290: 121844.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Xing Y, Chen X. Intercalating of AIEgens into MoS(2) nanosheets to induce crystal section rework for enhanced photothermal and photodynamic synergetic anti-tumor remedy. Talanta. 2024;271: 125677.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blau R, Krivitsky A, Epshtein Y, Satchi-Fainaro R. Are nanotheranostics and nanodiagnostics-guided drug supply stepping stones in direction of precision medication? Drug Resist Updat. 2016;27:39–58.

    Article 
    PubMed 

    Google Scholar
     

  • Xing R, Zou Q, Yuan C, Zhao L, Chang R, Yan X. Self-assembling endogenous biliverdin as a flexible near-infrared photothermal nanoagent for most cancers theranostics. Adv Mater. 2019;31: e1900822.

    Article 
    PubMed 

    Google Scholar
     

  • Lu B, Hu S, Wu D, Wu C, Zhu Z, Hu L, Zhang J. Ionic liquid exfoliated Ti(3)C(2)T(x) MXene nanosheets for photoacoustic imaging and synergistic photothermal/chemotherapy of most cancers. J Mater Chem B. 2022;10:1226–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia L, Chen J, Xie Y, Zhang S, Xia W, Feng W, Chen Y. Photograph-/piezo-activated ultrathin molybdenum disulfide nanomedicine for synergistic tumor remedy. J Mater Chem B. 2023;11:2895–903.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Kong L, Hu W, Zhang C, Pich A, Shi X, Wang X, Xing L. Secure and environment friendly 2D molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: A preclinical examine. J Adv Res. 2022;37:255–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Movileanu C, Anghelache M, Turtoi M, Voicu G, Neacsu IA, Ficai D, Trusca R, Oprea O, Ficai A, Andronescu E, Calin M. Folic acid-decorated PEGylated magnetite nanoparticles as environment friendly drug carriers to tumor cells overexpressing folic acid receptor. Int J Pharm. 2022;625: 122064.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thuy LT, Lee S, Dongquoc V, Choi JS. Nanoemulsion Composed of α-Tocopherol Succinate and Dequalinium Exhibits Mitochondria-Concentrating on and Anticancer Results. Antioxidants (Basel). 2023;54:12.


    Google Scholar
     

  • Hu W, Xiao T, Li D, Fan Y, Xing L, Wang X, Li Y, Shi X, Shen M. Clever molybdenum disulfide complexes as a platform for cooperative imaging-guided tri-mode chemo-photothermo-immunotherapy. Adv Sci (Weinh). 2021;8: e2100165.

    Article 
    PubMed 

    Google Scholar
     

  • Lan Y, Liang Q, Solar Y, Cao A, Liu L, Yu S, Zhou L, Liu J, Zhu R, Liu Y. Codelivered chemotherapeutic doxorubicin through a dual-functional immunostimulatory polymeric prodrug for breast most cancers immunochemotherapy. ACS Appl Mater Interfaces. 2020;12:31904–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang R, Li N, Zhang T, Solar Y, He X, Lu X, Chu L, Solar Ok. Tumor microenvironment-responsive micelles assembled from a prodrug of mitoxantrone and 1-methyl tryptophan for enhanced chemo-immunotherapy. Drug Deliv. 2023;30:2182254.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Zheng J, Nie H, Zhang D, Cao D, Xing Z, Li B, Jia L. Molybdenum disulfide-based hyaluronic acid-guided multifunctional theranostic nanoplatform for magnetic resonance imaging and synergetic chemo-photothermal remedy. J Colloid Interface Sci. 2019;548:131–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alsaikhan F. Hyaluronic acid-empowered nanotheranostics in breast and lung cancers remedy. Environ Res. 2023;237: 116951.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai L, Dong L, Sha X, Zhang S, Liu S, Track X, Zhao M, Wang Q, Xu Ok, Li J. Exfoliation and in situ functionalization of MoS2 nanosheets for MRI-guided mixed low-temperature photothermal remedy and chemotherapy. Mater Des. 2021;210: 110020.

    Article 
    CAS 

    Google Scholar
     

  • Hatami E, Jaggi M, Chauhan SC, Yallapu MM. Gambogic acid: A shining pure compound to nanomedicine for most cancers therapeutics. Biochim Biophys Acta Rev Most cancers. 2020;1874: 188381.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yon M, Billotey C, Marty JD. Gadolinium-based distinction brokers: From gadolinium complexes to colloidal programs. Int J Pharm. 2019;569: 118577.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh S, Yang CJ, Lai JY. Optically lively two-dimensional MoS(2)-based nanohybrids for numerous biosensing purposes: A complete evaluation. Biosens Bioelectron. 2024;246: 115861.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji Y, Wang Y, Wang X, Lv C, Zhou Q, Jiang G, Yan B, Chen L. Past the promise: Exploring the complicated interactions of nanoparticles inside organic programs. J Hazard Mater. 2024;468: 133800.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chrishtop VV, Prilepskii AY, Nikonorova VG, Mironov VA. Nanosafety vs nanotoxicology: sufficient animal fashions for testing in vivo toxicity of nanoparticles. Toxicology. 2021;462:152952.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang D, He A, Zhou R, Wang Y, Xiao X, Gong T, Kang W, Lin X, Wang X, Liu L, et al. Constructing consensus on the appliance of organoid-based drug sensitivity testing in most cancers precision medication and drug improvement. Theranostics. 2024;14:3300–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson CE, Inexperienced NH, English WR, Claeyssens F. The usage of microphysiological programs to mannequin metastatic most cancers. Biofabrication. 2024;16:89654.

    Article 

    Google Scholar
     

  • Jia R, Teng L, Gao L, Su T, Fu L, Qiu Z, Bi Y. Advances in a number of stimuli-responsive drug-delivery programs for most cancers remedy. Int J Nanomed. 2021;16:1525–51.

    Article 

    Google Scholar
     

  • Xia M, Luo D, Dong J, Zheng M, Meng G, Wu J, Wei J. Graphene oxide arms oncolytic measles virus for improved effectiveness of most cancers remedy. J Exp Clin Most cancers Res. 2019;38:408.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui X, Tang X, Niu Y, Tong L, Zhao H, Yang Y, Jin G, Li M, Han X. Practical phosphorene: Burgeoning era, two-dimensional nanotherapeutic platform for oncotherapy. Coord Chem Rev. 2024;507: 215744.

    Article 
    CAS 

    Google Scholar
     

  • Yu G-T, Rao L, Wu H, Yang L-L, Bu L-L, Deng W-W, Wu L, Nan X, Zhang W-F, Zhao X-Z, et al. Myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for most cancers theranostics by inducing macrophage polarization and synergizing immunogenic. Cell Dying. 2018;28:1801389.


    Google Scholar
     

  • Su Y, Wang T, Su Y, Li M, Zhou J, Zhang W, Wang W. A neutrophil membrane-functionalized black phosphorus using inflammatory sign for constructive suggestions and multimode most cancers remedy. Mater Horiz. 2020;7:574–85.

    Article 
    CAS 

    Google Scholar
     

  • He H, Liu L, Morin EE, Liu M, Schwendeman A. Survey of medical translation of most cancers nanomedicines-lessons realized from successes and failures. Acc Chem Res. 2019;52:2445–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Germain M, Caputo F, Metcalfe S, Tosi G, Spring Ok, Åslund AKO, Pottier A, Schiffelers R, Ceccaldi A, Schmid R. Delivering the facility of nanomedicine to sufferers at the moment. J Management Launch. 2020;326:164–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang ZW, Yang Y, Wu H, Zhang T. Advances within the two-dimensional layer supplies for most cancers analysis and remedy: distinctive benefits past the microsphere. Entrance Bioeng Biotechnol. 2023;11:1278871.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *