Steel-ion-chelating phenylalanine nanostructures reverse immune dysfunction and sensitize breast tumour to immune checkpoint blockade

  • Korman, A. J., Garrett-Thomson, S. C. & Lonberg, N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug Discov. 21, 509–528 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chowell, D. et al. Improved prediction of immune checkpoint blockade efficacy throughout a number of most cancers varieties. Nat. Biotechnol. 40, 499–506 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Genova, C. et al. Therapeutic implications of tumor microenvironment in lung most cancers: deal with immune checkpoint blockade. Entrance. Immunol. 12, 799455 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, A. C. & Zappasodi, R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular foundation for immune sensitivity and resistance. Nat. Immunol. 23, 660–670 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falcomatà, C. et al. Context-specific determinants of the immunosuppressive tumor microenvironment in pancreatic most cancers. Most cancers Discov. 13, 278–297 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budczies, J. et al. Deciphering the immunosuppressive tumor microenvironment in ALK-and EGFR-positive lung adenocarcinoma. Most cancers Immunol. Immunother. 71, 251–265 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ajona, D. et al. Quick-term hunger reduces IGF-1 ranges to sensitize lung tumors to PD-1 immune checkpoint blockade. Nat. Most cancers 1, 75–85 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeVito, N. C. et al. Pharmacological Wnt ligand inhibition overcomes key tumor-mediated resistance pathways to anti-PD-1 immunotherapy. Cell Rep. 35, 109071 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. EGFR is a grasp change between immunosuppressive and immunoactive tumor microenvironment in inflammatory breast most cancers. Sci. Adv. 8, eabn7983 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Q.-H. et al. Exosome-mediated immunosuppression in tumor microenvironments. Cells 11, 1946 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wculek, S. Okay. et al. Dendritic cells in most cancers immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, Y. et al. In situ reworking RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for sturdy most cancers immunotherapy. Nano Lett. 21, 2224–2231 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohammadzadeh, Y. & De Palma, M. Boosting dendritic cell nanovaccines. Nat. Nanotechnol. 17, 442–444 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sellars, M. C., Wu, C. J. & Fritsch, E. F. Most cancers vaccines: constructing a bridge over troubled waters. Cell 185, 2770–2788 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinman, R. M. Selections about dendritic cells: previous, current, and future. Annu. Rev. Immunol. 30, 1–22 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Møller, S. H., Wang, L. & Ho, P.-C. Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cell. Mol. Immunol. 19, 370–383 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Barbet, G. et al. The calcium-activated nonselective cation channel TRPM4 is important for the migration however not the maturation of dendritic cells. Nat. Immunol. 9, 1148–1156 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zsiros, E. et al. Developmental change of the expression of ion channels in human dendritic cells. J. Immunol. 183, 4483–4492 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, X., Oh-Hora, M., Takeda, Okay. & Yamasaki, S. Selective suppression of IL-10 transcription by calcineurin in dendritic cells by way of inactivation of CREB. Int. Immunol. 34, 197–206 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaeth, M. et al. Ca2+ signaling however not store-operated Ca2+ entry is required for the perform of macrophages and dendritic cells. J. Immunol. 195, 1202–1217 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crottès, D. et al. Immature human dendritic cells improve their migration by way of KCa3.1 channel activation. Cell Calcium 59, 198–207 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Duo, L. et al. Achieve of perform of ion channel TRPV1 exacerbates experimental colitis by selling dendritic cell activation. Mol. Ther. Nucleic Acids 22, 924–936 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barth, A. & Zscherp, C. What vibrations inform about proteins. Q. Rev. Biophys. 35, 369–430 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, Z., Solar, L., Huang, Y., Wang, Y. & Zhang, M. Bioinspired fluorescent dipeptide nanoparticles for focused most cancers cell imaging and real-time monitoring of drug launch. Nat. Nanotechnol. 11, 388–394 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fleming, S. et al. Assessing the utility of infrared spectroscopy as a structural diagnostic software for β-sheets in self-assembling fragrant peptide amphiphiles. Langmuir 29, 9510–9515 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bröer, S. Amino acid transporters as targets for most cancers remedy: why, the place, when, and the way. Int. J. Mol. Sci. 21, 6156 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bannunah, A. M., Vllasaliu, D., Lord, J. & Stolnik, S. Mechanisms of nanoparticle internalization and transport throughout an intestinal epithelial cell mannequin: impact of dimension and floor cost. Mol. Pharmacol. 11, 4363–4373 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Muñoz-Planillo, R. et al. Okay+ efflux is the frequent set off of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, C. et al. The AIM2 and NLRP3 inflammasomes set off IL-1-mediated antitumor results throughout radiation. Sci. Immunol. 6, eabc6998 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swanson, Okay. V., Deng, M. & Ting, J. P.-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, H. et al. Cathepsin B hyperlinks oxidative stress to the activation of NLRP3 inflammasome. Exp. Cell Res. 362, 180–187 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandy, Okay. G. & Norton, R. S. Peptide blockers of Kv1.3 channels in T cells as therapeutics for autoimmune illness. Curr. Opin. Chem. Biol. 38, 97–107 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshioka, Okay. & Moeder, W. Calcium channel in vegetation helps shut the door on intruders. Nature 585, 507–508 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edin, S., Oruganti, S. R., Grundström, C. & Grundström, T. Interplay of calmodulin with Bcl10 modulates NF-κB activation. Mol. Immunol. 47, 2057–2064 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, Y. et al. Modulatory perform of calmodulin on phagocytosis and potential regulation mechanisms within the blood clam Tegillarca granosa. Dev. Comp. Immunol. 116, 103910 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berry, C. T., Might, M. J. & Freedman, B. D. STIM- and Orai-mediated calcium entry controls NF-κB exercise and performance in lymphocytes. Cell Calcium 74, 131–143 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T., Ma, C., Zhang, Z., Zhang, H. & Hu, H. NF‐κB signaling in irritation and most cancers. MedComm 2, 618–653 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Q. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical most cancers therapy. Nat. Nanotechnol. 14, 89–97 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor management and reply to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, W. F. KV1.3: a brand new therapeutic goal to regulate vascular easy muscle cell proliferation. Arterioscler. Thromb. Vasc. Biol. 30, 1073–1074 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webb, B. & Sali, A. Protein construction modeling with MODELLER. Strategies Mol. Biol. 1137, 1–15 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selvakumar, P. et al. Constructions of the T cell potassium channel Kv1.3 with immunoglobulin modulators. Nat. Commun. 13, 3854 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodsell, D. S., Sanner, M. F., Olson, A. J. & Forli, S. The AutoDock suite at 30. Protein Sci. 30, 31–43 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almagro, J. C. et al. Antibody modeling evaluation. Proteins 79, 3050–3066 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune, L. F., Lee, T. S., Zhu, C., York, D. M. & Merz, Okay. M.Jr Utilizing AMBER18 for relative free vitality calculations. J. Chem. Inf. Mannequin. 59, 3128–3135 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmgren, M., Shin, Okay. S. & Yellen, G. The activation gate of a voltage-gated Okay+ channel may be trapped within the open state by an intersubunit metallic bridge. Neuron 21, 617–621 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Twin-targeting nanoparticle vaccine elicits a therapeutic antibody response towards continual hepatitis B. Nat. Nanotechnol. 15, 406–416 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, H. et al. Genetic fate-mapping reveals floor accumulation however not deep organ invasion of pleural and peritoneal cavity macrophages following damage. Nat. Commun. 12, 2863 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *