A cuproptosis nanocapsule for most cancers radiotherapy

  • Sung, H. et al. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 nations. CA Most cancers J. Clin. 71, 209–249 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Begg, A. C., Stewart, F. A. & Vens, C. Methods to enhance radiotherapy with focused medication. Nat. Rev. Most cancers 11, 239–253 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pitroda, S. P., Chmura, S. J. & Weichselbaum, R. R. Integration of radiotherapy and immunotherapy for therapy of oligometastases. Lancet Oncol. 20, e434–e442 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishiga, Y. et al. Radiotherapy together with CD47 blockade elicits a macrophage-mediated abscopal impact. Nat. Most cancers 3, 1351–1366 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petroni, G., Cantley, L. C., Santambrogio, L., Formenti, S. C. & Galluzzi, L. Radiotherapy as a instrument to elicit clinically actionable signalling pathways in most cancers. Nat. Rev. Clin. Oncol. 19, 114–131 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andratschke, N. et al. European Society for Radiotherapy and Oncology and European Organisation for Analysis and Remedy of Most cancers consensus on re-irradiation: definition, reporting, and scientific choice making. Lancet Oncol. 23, e469–e478 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Fattahi, S. et al. Reirradiation for locoregional recurrent breast most cancers. Adv. Radiat. Oncol. 6, 100640 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • De Ruysscher, D., Faivre-Finn, C., Le Pechoux, C., Peeters, S. & Belderbos, J. Excessive-dose re-irradiation following radical radiotherapy for non-small-cell lung most cancers. Lancet Oncol. 15, e620–e624 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Beddok, A. et al. Scientific and technical challenges of most cancers reirradiation: phrases of knowledge. Crit. Rev. Oncol. Hematol. 174, 103655 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Y.-P. et al. Endoscopic surgical procedure in contrast with intensity-modulated radiotherapy in resectable regionally recurrent nasopharyngeal carcinoma: a multicentre, open-label, randomised, managed, part 3 trial. Lancet Oncol. 22, 381–390 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Xiang, G. et al. Re-irradiation for native primary-recurrence esophageal squamous cell carcinoma handled with IMRT/VMAT. Radiat. Oncol. 18, 114 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahantshetty, U. et al. Reirradiation with superior brachytherapy methods in recurrent GYN cancers. Brachytherapy 22, 753–760 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, R.-X. & Zhou, P.-Ok. DNA injury response signaling pathways and targets for radiotherapy sensitization in most cancers. Sign Transduct. Goal. Ther. 5, 60 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Ok. & Tepper, J. E. Radiation therapy-associated toxicity: etiology, administration, and prevention. CA Most cancers J. Clin. 71, 437–454 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. ZBP1-MLKL necroptotic signaling potentiates radiation-induced antitumor immunity by way of intratumoral STING pathway activation. Sci. Adv. 7, eabf6290 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tam, S. Y., Wu, V. W. C. & Regulation, H. Ok. W. Affect of autophagy on the efficacy of radiotherapy. Radiat. Oncol. 12, 57 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei, G. et al. The function of ferroptosis in ionizing radiation-induced cell demise and tumor suppression. Cell Res. 30, 146–162 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, C. et al. The AIM2 and NLRP3 inflammasomes set off IL-1–mediated antitumor results throughout radiation. Sci. Immunol. 6, eabc6998 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Radiotherapy modulates tumor cell destiny choices: a evaluate. Radiat. Oncol. 17, 196 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsvetkov, P. et al. Copper induces cell demise by focusing on lipoylated TCA cycle proteins. Science 375, 1254–1261 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L., Min, J. & Wang, F. Copper homeostasis and cuproptosis in well being and illness. Sign Transduct. Goal. Ther. 7, 378 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cobine, P. A. & Brady, D. C. Cuproptosis: mobile and molecular mechanisms underlying copper-induced cell demise. Mol. Cell 82, 1786–1787 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, X.-Ok. et al. Orchestrated copper-based nanoreactor for reworking tumor microenvironment to amplify cuproptosis-mediated anti-tumor immunity in colorectal most cancers. Mater. At present 68, 108–124 (2023).

  • Hasegawa, Ok., Saga, R. & Hosokawa, Y. Radiotherapeutic evaluate: acquisition of radioresistance and most cancers stem cell properties by way of irradiation. Radiat. Environ. Med. 12, 25–36 (2023).


    Google Scholar
     

  • Grey, M. et al. Growth and characterisation of acquired radioresistant breast most cancers cell traces. Radiat. Oncol. 14, 64 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, P., et al. Most cancers nanomedicine towards scientific translation: obstacles, alternatives, and future prospects. Med 4, 147–167 (2022).

  • Liu, L., Zhao, C., Miller, J. T. & Li, Y. Mechanistic research of CO2 photoreduction with H2O on Cu/TiO2 nanocomposites by in situ X-ray absorption and infrared spectroscopies. J. Phys. Chem. C 121, 490–499 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, D. et al. In situ shaped Z-scheme graphdiyne heterojunction realizes NIR-photocatalytic oxygen evolution and selective radiosensitization for hypoxic tumors. ACS Nano 16, 21186–21198 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, Z. et al. Radiotherapy reduces N-oxides for prodrug activation in tumors. J. Am. Chem. Soc. 144, 9458–9464 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Z. et al. Radiotherapy-induced cleavage of quaternary ammonium teams prompts prodrugs in tumors. Angew. Chem. Int. Ed. 61, e202205014 (2022).

  • Zhang, C. et al. Tumor microenvironment-responsive Cu2(OH)PO4 nanocrystals for selective and controllable radiosentization by way of the X-ray-triggered Fenton-like response. Nano Lett. 19, 1749–1757 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Jiang, N., Xu, H., Luo, Y. & Zhang, T. Hint Cu(II)-mediated selective oxidation of benzothiazole: the predominance of sequential Cu(II)–Cu(I)–Cu(III) valence transition and dissolved oxygen. Environ. Sci. Technol. 57, 12523–12533 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, L., Miller, E. W., Pralle, A., Isacoff, E. Y. & Chang, C. J. A selective turn-on fluorescent sensor for imaging copper in residing cells. J. Am. Chem. Soc. 128, 10–11 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat. Cell Biol. 25, 404–414 (2023).

  • Xu, W. et al. Tumor microenvironment responsive hole nanoplatform for triple amplification of oxidative stress to reinforce cuproptosis-based synergistic most cancers remedy. Adv. Healthc. Mater. 12, 2202949 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J. et al. Photothermally triggered copper payload launch for cuproptosis‐promoted most cancers synergistic remedy. Angew. Chem. Int. Ed. 62, e202213922 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Guo, B. et al. Cuproptosis induced by ROS responsive nanoparticles with elesclomol and copper mixed with αPD-L1 for enhanced most cancers immunotherapy. Adv. Mater. 35, 2212267 (2023).

  • Tang, D., Chen, X. & Kroemer, G. Cuproptosis: a copper-triggered modality of mitochondrial cell demise. Cell Res. 32, 417–418 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, B. et al. Photocatalysis-mediated drug-free sustainable most cancers remedy utilizing nanocatalyst. Nat. Commun. 12, 1345 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ning, S. et al. Sort-I AIE photosensitizer loaded biomimetic system boosting cuproptosis to inhibit breast most cancers metastasis and rechallenge. ACS Nano 17, 10206–10217 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, L. et al. Cuproptosis‐pushed enhancement of thermotherapy by sequentially response Cu2‐xSe by way of copper chemical transition. Adv. Funct. Mater. 33, 2302054 (2023).

  • Xu, W. et al. A hole amorphous bimetal natural framework for synergistic cuproptosis/ferroptosis/apoptosis anticancer remedy by way of disrupting intracellular redox homeostasis and copper/iron metabolisms. Adv. Funct. Mater. 32, 2205013 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Demaria, O. et al. Harnessing innate immunity in most cancers remedy. Nature 574, 45–56 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kroemer, G., Galassi, C., Zitvogel, L. & Galluzzi, L. Immunogenic cell stress and demise. Nat. Immunol. 23, 487–500 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fucikova, J. et al. Detection of immunogenic cell demise and its relevance for most cancers remedy. Cell Demise Dis. 11, 1013 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, Y. et al. Piezoelectric supplies for synergistic piezo- and radio-catalytic tumor remedy. Nano At present 44, 101510 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ni, Ok. et al. Synergistic checkpoint-blockade and radiotherapy–radiodynamic remedy by way of an immunomodulatory nanoscale steel–natural framework. Nat. Biomed. Eng. 6, 144–156 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Z. et al. Nanoscale coordination polymers induce immunogenic cell demise by amplifying radiation remedy mediated oxidative stress. Nat. Commun. 12, 145 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min, Y. et al. Antigen-capturing nanoparticles enhance the abscopal impact and most cancers immunotherapy. Nat. Nanotechnol. 12, 877–882 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melo, L. M. N., Lesner, N. P., Sabatier, M., Ubellacker, J. M. & Tasdogan, A. Rising metabolomic instruments to review most cancers metastasis. Developments Most cancers 8, 988–1001 (2022).

  • Li, H. et al. Nanomedicine embraces most cancers radio-immunotherapy: mechanism, design, current advances, and scientific translation. Chem. Soc. Rev. 52, 47–96 (2023).

  • Twyman-Saint Victor, C. et al. Radiation and twin checkpoint blockade activate non-redundant immune mechanisms in most cancers. Nature 520, 373–377 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franken, N. A. P., Rodermond, H. M., Stap, J., Haveman, J. & Van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315–2319 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *