The biomedical functions of nanozymes in orthopaedics primarily based on regulating reactive oxygen species | Journal of Nanobiotechnology

  • Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like exercise of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei H, Wang E. Nanomaterials with enzyme-like traits (nanozymes): next-generation synthetic enzymes. Chem Soc Rev. 2013;42:6060–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zandieh M, Liu J. Nanozymes: definition, exercise, and mechanisms. Adv Mater 2023:e2211041.

  • Shen X, Wang Z, Gao XJ, Gao X. Response mechanisms and kinetics of Nanozymes: insights from idea and computation. Adv Mater 2023:e2211151.

  • Chen Z, Yu Y, Gao Y, Zhu Z. Rational design methods for Nanozymes. ACS Nano. 2023;17:13062–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nanozymology: connecting Biology and Nanotechnology. Singapore: Springer; 2020.

  • Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like traits (nanozymes): next-generation synthetic enzymes (II). Chem Soc Rev. 2019;48:1004–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alizadeh N, Salimi A. Multienzymes exercise of metals and metallic oxide nanomaterials: functions from biotechnology to drugs and environmental engineering. J Nanobiotechnol. 2021;19:26.

    Article 
    CAS 

    Google Scholar
     

  • Kandathil V, Patil SA. Single-atom nanozymes and environmental catalysis: a perspective. Adv Colloid Interface Sci. 2021;294:102485.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shamsabadi A, Haghighi T, Carvalho S, Frenette LC, Stevens MM. The Nanozyme Revolution: enhancing the efficiency of Medical Biosensing platforms. Adv Mater 2023:e2300184.

  • Das B, Franco JL, Logan N, Balasubramanian P, Kim MI, Cao C. Nanozymes in Level-of-care analysis: an Rising Futuristic Method for Biosensing. Nanomicro Lett. 2021;13:193.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou H, Liu L, Li Q, Wang J, Du B. A Cascade enzyme system integrating peroxidase mimic with catalase for Linear Vary enlargement of H(2) O(2) assay: a mechanism and utility examine. Small. 2023;19:e2300444.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang X, Chen X, Zhao Y. Nanozymes: versatile platforms for Most cancers analysis and remedy. Nanomicro Lett. 2022;14:95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma G, Chatterjee S, Chakraborty C, Kim JC. Advances in Nanozymes as a paradigm for viral Diagnostics and Remedy. Pharmacol Rev. 2023;75:739–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navyatha B, Singh S, Nara S. AuPeroxidase nanozymes: guarantees and functions in biosensing. Biosens Bioelectron. 2021;175:112882.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A overview on metal- and metallic oxide-based nanozymes: Properties, mechanisms, and functions. Nanomicro Lett. 2021;13:154.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang S, Liu Y, Solar S, Wang J, Li Q, Yan R, Gao Y, Liu H, Liu S, Hao W, et al. Catalytic patch with redox Cr/CeO(2) nanozyme of noninvasive intervention for mind trauma. Theranostics. 2021;11:2806–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu W, Jiao L, Wu Y, Hu L, Gu W, Zhu C. Metallic-Natural frameworks Improve Biomimetic Cascade Catalysis for Biosensing. Adv Mater. 2021;33:e2005172.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Tian Q, Wang H, Ma R, Han R, Wang Y, Ge H, Ren Y, Yang R, Yang H et al. A manganese-based Metallic-Natural Framework as a Chilly-adapted Nanozyme. Adv Mater 2022:e2206421.

  • Gao W, He J, Chen L, Meng X, Ma Y, Cheng L, Tu Ok, Gao X, Liu C, Zhang M, et al. Deciphering the catalytic mechanism of superoxide dismutase exercise of carbon dot nanozyme. Nat Commun. 2023;14:160.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Q, Zhang L. Design of carbon dots as nanozymes to mediate redox organic processes. J Mater Chem B. 2023;11:5071–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang J, Midgley AC, Wei Y, Liu Q, Kong D, Huang X. Machine-learning-assisted Nanozyme Design: classes from supplies and Engineered enzymes. Adv Mater 2023:e2210848.

  • Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, Li X, Huo M. Nanozymes-recent improvement and biomedical functions. J Nanobiotechnol. 2022;20:92.

    Article 
    CAS 

    Google Scholar
     

  • Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-Based mostly nanomedicine. Chem Rev. 2019;119:4881–985.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh N, Sherin GR, Mugesh G. Antioxidant and prooxidant nanozymes: from Mobile Redox Regulation to Subsequent-Technology therapeutics. Angew Chem Int Ed Engl. 2023;62:e202301232.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halliwell B. Understanding mechanisms of antioxidant motion in well being and illness. Nat Rev Mol Cell Biol 2023.

  • Nathan C, Cunningham-Bussel A. Past oxidative stress: an immunologist’s information to reactive oxygen species. Nat Rev Immunol. 2013;13:349–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8:813–24.

    Article 
    PubMed 

    Google Scholar
     

  • Cheung EC, Vousden KH. The position of ROS in tumour improvement and development. Nat Rev Most cancers. 2022;22:280–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative illnesses. Molecules 2019, 24.

  • Liu L, Zhang Ok, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, Li Z, Hui J, Graham BH, Quintana A, Bellen HJ. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell. 2015;160:177–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Murugesan P, Huang Ok, Cai H. NADPH oxidases and oxidase crosstalk in cardiovascular illnesses: novel therapeutic targets. Nat Rev Cardiol. 2020;17:170–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei Y, Wang Ok, Deng L, Chen Y, Good EC, Huang C. Redox regulation of irritation: previous components, a brand new story. Med Res Rev. 2015;35:306–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao H, Zhang R, Yan X, Fan Ok. Superoxide dismutase nanozymes: an rising star for anti-oxidation. J Mater Chem B. 2021;9:6939–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu D, Wu L, Yao H, Zhao L. Catalase-like Nanozymes: classification, Catalytic mechanisms, and their functions. Small. 2022;18:e2203400.

    Article 
    PubMed 

    Google Scholar
     

  • Lai Y, Wang J, Yue N, Zhang Q, Wu J, Qi W, Su R. Glutathione peroxidase-like nanozymes: mechanism, classification, and bioapplication. Biomater Sci. 2023;11:2292–316.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical functions. Chem Soc Rev. 2019;48:3683–704.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev. 2014;114:3854–918.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Islam MN, Rauf A, Fahad FI, Emran TB, Mitra S, Olatunde A, Shariati MA, Rebezov M, Rengasamy KRR, Mubarak MS. Superoxide dismutase: an up to date overview on its well being advantages and industrial functions. Crit Rev Meals Sci Nutr. 2022;62:7282–300.

    Article 
    PubMed 

    Google Scholar
     

  • Li H, Xia P, Pan S, Qi Z, Fu C, Yu Z, Kong W, Chang Y, Wang Ok, Wu D, Yang X. The advances of Ceria nanoparticles for Biomedical Functions in Orthopaedics. Int J Nanomed. 2020;15:7199–214.

    Article 
    CAS 

    Google Scholar
     

  • Ma Y, Tian Z, Zhai W, Qu Y. Insights on catalytic mechanism of CeO(2) as a number of nanozymes. Nano Res. 2022;15:10328–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirkman HN, Gaetani GF. Mammalian catalase: a venerable enzyme with new mysteries. Tendencies Biochem Sci. 2007;32:44–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alfonso-Prieto M, Biarnés X, Vidossich P, Rovira C. The molecular mechanism of the catalase response. J Am Chem Soc. 2009;131:11751–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flohé L, Toppo S, Orian L. The glutathione peroxidase household: discoveries and mechanism. Free Radic Biol Med. 2022;187:113–22.

    Article 
    PubMed 

    Google Scholar
     

  • Flohé L, Loschen G, Günzler WA, Eichele E. Glutathione peroxidase, V. The kinetic mechanism. Hoppe Seylers Z Physiol Chem. 1972;353:987–99.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang D, Shen N, Zhang J, Zhu J, Guo Y, Xu L. A novel nanozyme primarily based on selenopeptide-modified gold nanoparticles with a tunable glutathione peroxidase exercise. RSC Adv. 2020;10:8685–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vernekar AA, Sinha D, Srivastava S, Paramasivam PU, D’Silva P, Mugesh G. An antioxidant nanozyme that uncovers the cytoprotective potential of Vanadia nanowires. Nat Commun. 2014;5:5301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Liu J, He L, Liu S, Yang P. Nanozyme: a rising star for most cancers remedy. Nanoscale. 2023;15:12455–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar X, Xu X, Yue X, Wang T, Wang Z, Zhang C, Wang J. Nanozymes with Osteochondral Regenerative results: an summary of mechanisms and up to date functions. Adv Healthc Mater 2023:e2301924.

  • Glyn-Jones S, Palmer AJ, Agricola R, Worth AJ, Vincent TL, Weinans H, Carr AJ. Osteoarthritis. Lancet. 2015;386:376–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Sign Transduct Goal Ther. 2023;8:56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta. 2016;1862:576–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lepetsos P, Papavassiliou KA, Papavassiliou AG. Redox and NF-κB signaling in osteoarthritis. Free Radic Biol Med. 2019;132:90–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou W, Ye C, Chen M, Gao W, Xie X, Wu J, Zhang Ok, Zhang W, Zheng Y, Cai X. Excavating bioactivities of nanozyme to transform microenvironment for shielding chondrocytes and delaying osteoarthritis. Bioact Mater. 2021;6:2439–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong H, Zhao Y, Xu Q, Xie X, Wu J, Hu B, Chen S, Cai X, Zheng Y, Fan C. Biodegradable Hole-Structured Nanozymes modulate phenotypic polarization of macrophages and relieve hypoxia for therapy of Osteoarthritis. Small. 2022;18:e2203240.

    Article 
    PubMed 

    Google Scholar
     

  • Cho C, Oh H, Lee JS, Kang LJ, Oh EJ, Hwang Y, Kim SJ, Bae YS, Kim EJ, Kang HC, et al. Prussian blue nanozymes coated with Pluronic attenuate inflammatory osteoarthritis by blocking c-Jun N-terminal kinase phosphorylation. Biomaterials. 2023;297:122131.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Yang J, Chen X, Hu H, Lan N, Zhao J, Zheng L. Mitochondrial-targeting and NIR-responsive mn(3)O(4)@PDA@Pd-SS31 nanozymes cut back oxidative stress and reverse mitochondrial dysfunction to alleviate osteoarthritis. Biomaterials. 2024;305:122449.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou T, Ran J, Xu P, Shen L, He Y, Ye J, Wu L, Gao C. A hyaluronic acid/platelet-rich plasma hydrogel containing MnO(2) nanozymes effectively alleviates osteoarthritis in vivo. Carbohydr Polym. 2022;292:119667.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang W, Duan J, Ma W, Xia B, Liu F, Kong Y, Li B, Zhao H, Wang L, Li Ok, et al. Trimanganese Tetroxide Nanozyme protects cartilage towards degeneration by decreasing oxidative stress in Osteoarthritis. Adv Sci (Weinh). 2023;10:e2205859.

    Article 
    PubMed 

    Google Scholar
     

  • Yang X, Xiang J, Su W, Guo J, Deng J, Tang L, Li G, Liang Y, Zheng L, Zhong J et al. Modulating pt nanozyme through the use of remoted cobalt atoms to boost catalytic exercise for assuaging osteoarthritis. Nano In the present day 2023, 49.

  • Zhong J, Yang X, Gao S, Luo J, Xiang J, Li G, Liang Y, Tang L, Zheng L, Zhao J et al. Geometric and digital structure-matched Superoxide Dismutase-Like and Catalase-Like Sequential single-atom nanozymes for Osteoarthritis recession. Adv Funct Mater 2023, 33.

  • Xiang J, Yang X, Tan M, Guo J, Ye Y, Deng J, Huang Z, Wang H, Su W, Cheng J, et al. NIR-enhanced pt single atom/g-C(3)N(4) nanozymes as SOD/CAT mimics to rescue ATP vitality disaster by regulating oxidative phosphorylation pathway for delaying osteoarthritis development. Bioact Mater. 2024;36:1–13.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei H, Huang H, He H, Xiao Y, Chun L, Jin Z, Li H, Zheng L, Zhao J, Qin Z. Pt-Se Hybrid Nanozymes with Potent Catalytic actions to scavenge ROS/RONS and regulate macrophage polarization for Osteoarthritis Remedy. Res (Wash D C). 2024;7:0310.

    CAS 

    Google Scholar
     

  • Cai J, Liu LF, Qin Z, Liu S, Wang Y, Chen Z, Yao Y, Zheng L, Zhao J, Gao M. Pure morin-based metallic Natural Framework nanoenzymes modulate articular cavity microenvironment to Alleviate Osteoarthritis. Res (Wash D C). 2023;6:0068.

    CAS 

    Google Scholar
     

  • Yu B, Solar W, Lin J, Fan C, Wang C, Zhang Z, Wang Y, Tang Y, Lin Y, Zhou D. Utilizing Cu-Based mostly Metallic-Natural Framework as a Complete and highly effective antioxidant nanozyme for environment friendly osteoarthritis therapy. Adv Sci (Weinh). 2024;11:e2307798.

    Article 
    PubMed 

    Google Scholar
     

  • Hu H, Huang X, Dai Y, Zhu Ok, Ye X, Meng S, Zhang Q, Xie X. Natural metallic matrix Mil-88a nano-enzyme for joint restore within the osteoarthritis mouse mannequin. Entrance Bioeng Biotechnol. 2023;11:1164942.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu S, Mei X, Lin Y, Zhao X, Liang Z, Hu Y, Chen Z, Ren X. NIR triggered photocatalytic and photothermal bifunctional MOF nanozyme utilizing for enhancing osteoarthritis microenvironment by repairing injured chondrocytes of mitochondria. Chem Eng J 2023, 468.

  • Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393:364–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Yu W, Yin X, Cui L, Tang S, Jiang N, Cui L, Zhao N, Lin Q, Chen L, et al. Prevalence of osteoporosis and fracture in China: the China osteoporosis prevalence examine. JAMA Netw Open. 2021;4:e2121106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM, Cooper C. The epidemiology of osteoporosis. Br Med Bull. 2020;133:105–17.

    PubMed 

    Google Scholar
     

  • Zhang C, Li H, Li J, Hu J, Yang Ok, Tao L. Oxidative stress: a standard pathological state in a high-risk inhabitants for osteoporosis. Biomed Pharmacother. 2023;163:114834.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schröder Ok. NADPH oxidases in bone homeostasis and osteoporosis. Free Radic Biol Med. 2019;132:67–72.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng C, Wentworth Ok, Shoback DM. New frontiers in osteoporosis remedy. Annu Rev Med. 2020;71:277–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iantomasi T, Romagnoli C, Palmini G, Donati S, Falsetti I, Miglietta F, Aurilia C, Marini F, Giusti F, Brandi ML. Oxidative stress and irritation in osteoporosis: molecular mechanisms concerned and the connection with microRNAs. Int J Mol Sci 2023, 24.

  • Zheng L, Zhuang Z, Li Y, Shi T, Fu Ok, Yan W, Zhang L, Wang P, Li L, Jiang Q. Bone focusing on antioxidative nano-iron oxide for treating postmenopausal osteoporosis. Bioact Mater. 2022;14:250–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Ye C, Zhang W, Zhao Y, Zhang Ok, Hou W, Chen M, Lu J, Wu J, He R, Gao W, et al. Prussian Blue Nanozyme normalizes Microenvironment to Delay osteoporosis. Adv Healthc Mater. 2022;11:e2200787.

    Article 
    PubMed 

    Google Scholar
     

  • Li Ok, Huang J, Shi Y, Lin W, Liu X, Mao W, Wu C, Wang H, Chen H, Pan C et al. Focusing on ROS-induced osteoblast senescence and RANKL manufacturing by prussian blue nanozyme primarily based gene modifying platform to reverse osteoporosis. Nano In the present day 2023, 50.

  • Wei F, Neal CJ, Sakthivel TS, Fu Y, Omer M, Adhikary A, Ward S, Ta KM, Moxon S, Molinari M, et al. A novel strategy for the prevention of ionizing radiation-induced bone loss utilizing a designer multifunctional cerium oxide nanozyme. Bioact Mater. 2023;21:547–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Shao D, Li Ok, Hu T, Wang S, Xu H, Zhang S, Liu S, Xie Y, Zheng X. Titania nanotube array supported nanoceria with redox biking stability ameliorates oxidative stress-inhibited osteogenesis. Chem Eng J 2021, 415.

  • Li J, Chen Y, Zha D, Wu C, Li X, Yang L, Cao H, Cai S, Cai Y. Mg-ZIF nanozyme regulates the change between osteogenic and lipogenic differentiation in BMSCs through lipid metabolism. Lipids Well being Dis. 2024;23:88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francisco V, Pino J, González-Homosexual M, Lago F, Karppinen J, Tervonen O, Mobasheri A, Gualillo O. A brand new immunometabolic perspective of intervertebral disc degeneration. Nat Rev Rheumatol. 2022;18:47–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vergroesen PP, Kingma I, Emanuel KS, Hoogendoorn RJ, Welting TJ, van Royen BJ, van Dieën JH, Smit TH. Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthritis Cartilage. 2015;23:1057–70.

    Article 
    PubMed 

    Google Scholar
     

  • Wang F, Cai F, Shi R, Wang XH, Wu XT. Getting old and age associated stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthritis Cartilage. 2016;24:398–408.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Cheng H, Wang T, Zhang Ok, Zhang Y, Kang X. Oxidative stress in intervertebral disc degeneration: molecular mechanisms, pathogenesis and therapy. Cell Prolif. 2023;56:e13448.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang HJ, Liao HY, Bai DY, Wang ZQ, Xie XW. MAPK /ERK signaling pathway: a possible goal for the therapy of intervertebral disc degeneration. Biomed Pharmacother. 2021;143:112170.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou T, Yang X, Chen Z, Yang Y, Wang X, Cao X, Chen C, Han C, Tian H, Qin A, et al. Prussian blue nanoparticles stabilize SOD1 from Ubiquitination-Proteasome degradation to rescue intervertebral disc degeneration. Adv Sci (Weinh). 2022;9:e2105466.

    Article 
    PubMed 

    Google Scholar
     

  • Yang L, Yu C, Fan X, Zeng T, Yang W, Xia J, Wang J, Yao L, Hu C, Jin Y, et al. Twin-dynamic-bond cross-linked injectable hydrogel of multifunction for intervertebral disc degeneration remedy. J Nanobiotechnol. 2022;20:433.

    Article 
    CAS 

    Google Scholar
     

  • Shi Y, Li H, Chu D, Lin W, Wang X, Wu Y, Li Ok, Wang H, Li D, Xu Z, et al. Rescuing Nucleus Pulposus cells from Senescence through Twin-Useful Greigite Nanozyme to alleviate intervertebral disc degeneration. Adv Sci (Weinh). 2023;10:e2300988.

    Article 
    PubMed 

    Google Scholar
     

  • Shen J, Chen A, Cai Z, Chen Z, Cao R, Liu Z, Li Y, Hao J. Exhausted native lactate accumulation through injectable nanozyme-functionalized hydrogel microsphere for irritation aid and tissue regeneration. Bioact Mater. 2022;12:153–68.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu S, Shi Y, Jiang L, Bu W, Zhang Ok, Lin W, Pan C, Xu Z, Du J, Chen H, Wang H. N-Acetylcysteine-derived Carbon dots at no cost radical scavenging in intervertebral disc degeneration. Adv Healthc Mater. 2023;12:e2300533.

    Article 
    PubMed 

    Google Scholar
     

  • Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone improvement and restore. Nat Rev Mol Cell Biol. 2020;21:696–711.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bădilă AE, Rădulescu DM, Ilie A, Niculescu AG, Grumezescu AM, Rădulescu AR. Bone regeneration and oxidative stress: an up to date overview. Antioxid (Basel) 2022, 11.

  • Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Irritation, fracture and bone restore. Bone. 2016;86:119–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei F, Neal CJ, Sakthivel TS, Kean T, Seal S, Coathup MJ. Multi-functional cerium oxide nanoparticles regulate irritation and improve osteogenesis. Mater Sci Eng C Mater Biol Appl. 2021;124:112041.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Ok, Xie Y, You M, Huang L, Zheng X. Cerium Oxide-Integrated Calcium Silicate Coating protects MC3T3-E1 osteoblastic cells from H(2)O(2)-Induced oxidative stress. Biol Hint Elem Res. 2016;174:198–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang S, Ji J, Luo M, Li H, Gao Z. Poly(tannic acid) nanocoating primarily based floor modification for building of multifunctional composite CeO(2)NZs to boost cell proliferation and antioxidative viability of preosteoblasts. Nanoscale. 2021;13:16349–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan H, Miao X, Deng J, Pan C, Cheng X, Wang X. Bimetallic Metallic-Natural Framework for Mitigating Aseptic Osteolysis. ACS Appl Mater Interfaces. 2023;15:4935–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG. Traumatic spinal twine damage. Nat Rev Dis Primers. 2017;3:17018.

    Article 
    PubMed 

    Google Scholar
     

  • Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal twine damage: molecular mechanisms and therapeutic interventions. Sign Transduct Goal Ther. 2023;8:245.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu M, Wang Z, Wang D, Aierxi M, Ma Z, Wang Y. Oxidative stress following spinal twine damage: from molecular mechanisms to therapeutic targets. J Neurosci Res. 2023;101:1538–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK, Lokanathan Y. Spinal twine Harm: pathophysiology, Multimolecular interactions, and underlying restoration mechanisms. Int J Mol Sci 2020, 21.

  • Kim JW, Mahapatra C, Hong JY, Kim MS, Leong KW, Kim HW, Hyun JK. Useful restoration of Contused spinal twine in rat with the injection of optimal-dosed Cerium Oxide nanoparticles. Adv Sci (Weinh). 2017;4:1700034.

    Article 
    PubMed 

    Google Scholar
     

  • Xu L, Mu J, Ma Z, Lin P, Xia F, Hu X, Wu J, Cao J, Liu S, Huang T, et al. Nanozyme-Built-in Thermoresponsive in situ forming Hydrogel enhances mesenchymal stem cell viability and paracrine impact for environment friendly spinal twine restore. ACS Appl Mater Interfaces. 2023;15:37193–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong T, Yang Ok, Zhao T, Zhao H, Gao X, You Z, Fan C, Kang X, Yang W, Zhuang Y, et al. Multifunctional Built-in Nanozymes facilitate spinal twine regeneration by reworking the extrinsic neural atmosphere. Adv Sci (Weinh). 2023;10:e2205997.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang Y, Rong H, Wang Y, Liu S, Xu P, Luo Z, Guo L, Zhu T, Rong H, Wang D, et al. Single-atom cobalt nanozymes promote spinal twine damage restoration by anti-oxidation and neuroprotection. Nano Res. 2023;16:9752–9.

    Article 
    CAS 

    Google Scholar
     

  • Dalbeth N, Choi HK, Joosten LAB, Khanna PP, Matsuo H, Perez-Ruiz F, Stamp LK. Gout. Nat Rev Dis Primers. 2019;5:69.

    Article 
    PubMed 

    Google Scholar
     

  • Richette P, Bardin T. Gout. Lancet. 2010;375:318–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stamp LK, Farquhar H. Remedy advances in gout. Finest Pract Res Clin Rheumatol. 2021;35:101719.

    Article 
    PubMed 

    Google Scholar
     

  • Schlesinger N, Pérez-Ruiz F, Lioté F. Mechanisms and rationale for uricase use in sufferers with gout. Nat Rev Rheumatol 2023.

  • Chen R, Yang J, Wu M, Zhao D, Yuan Z, Zeng L, Hu J, Zhang X, Wang T, Xu J, Zhang J. M2 macrophage hybrid membrane-camouflaged focused Biomimetic nanosomes to reprogram inflammatory microenvironment for enhanced enzyme-Thermo-Immunotherapy. Adv Mater. 2023;35:e2304123.

    Article 
    PubMed 

    Google Scholar
     

  • Ming J, Zhu T, Li J, Ye Z, Shi C, Guo Z, Wang J, Chen X, Zheng N. A Novel Cascade Nanoreactor integrating two-dimensional Pd-Ru Nanozyme, Uricase and Crimson Blood Cell membrane for extremely environment friendly hyperuricemia therapy. Small. 2021;17:e2103645.

    Article 
    PubMed 

    Google Scholar
     

  • Parmekar MV, Salker AV. Extremely tuned cobalt-doped MnO2 nanozyme as remarkably environment friendly uricase mimic. Appl Nanosci. 2020;10:317–28.

    Article 
    CAS 

    Google Scholar
     

  • Liu D, Yang P, Wang F, Wang C, Chen L, Ye S, Dramou P, Chen J, He H. Research on efficiency of mimic uricase and its utility in enzyme-free evaluation. Anal Bioanal Chem. 2021;413:6571–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu D, Yi S, Ni X, Zhang J, Wang F, Yang P, Liu M, Peng J, Dramou P, He H. Preparation and Utility of Nanozymes with Uricase-Like Exercise primarily based on molecularly imprinted polymers. ChemPlusChem. 2023;88:e202200286.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Qin Y, Zhang Q, Zou W, Jin L, Guo R. Arginine-rich peptide/platinum hybrid colloid nanoparticle cluster: a single nanozyme mimicking multi-enzymatic cascade programs in peroxisome. J Colloid Interface Sci. 2021;600:37–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin A, Solar Z, Xu X, Zhao S, Li J, Solar H, Wang Q, Jiang Q, Wei H, Shi D. Self-Cascade Uricase/Catalase mimics alleviate Acute gout. Nano Lett. 2022;22:508–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith MH, Berman JR. What Is Rheumatoid Arthritis? Jama. 2022;327:1194.

    PubMed 

    Google Scholar
     

  • McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Zeng S, Xue Q, Hong Y, Liu L, Tune L, Fang C, Zhang H, Wang B, Sedgwick AC, et al. Photoacoustic image-guided biomimetic nanoparticles focusing on rheumatoid arthritis. Proc Natl Acad Sci U S A. 2022;119:e2213373119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia M, Ren W, Liu Y, Wang C, Zheng X, Zhang D, Tan X, Li C. Messenger Nanozyme for Reprogramming the Microenvironment of Rheumatoid Arthritis. ACS Appl Mater Interfaces. 2023;15:338–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Tune S, Wang D, Liu H, Zhang J, Li Z, Wang J, Ren X, Zhao Y. Nanozyme-reinforced hydrogel as a H(2)O(2)-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis remedy. Nat Commun. 2022;13:6758.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalashnikova I, Chung SJ, Nafiujjaman M, Hill ML, Siziba ME, Contag CH, Kim T. Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics. 2020;10:11863–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen MW, Lu QJ, Chen YJ, Hou YK, Zou YM, Zhou Q, Zhang WH, Yuan LX, Chen JX. NIR-PTT/ROS-Scavenging/Oxygen-Enriched synergetic remedy for rheumatoid arthritis by a pH-Responsive hybrid CeO(2)-ZIF-8 coated with Polydopamine. ACS Biomater Sci Eng. 2022;8:3361–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou F, Li M, Chen M, Chen M, Chen X, Luo Z, Cai Ok, Hu Y. Redox Homeostasis Technique for Inflammatory Macrophage Reprogramming in Rheumatoid Arthritis primarily based on Ceria Oxide Nanozyme-Complexed Biopolymeric Micelles. ACS Nano. 2023;17:4358–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beird HC, Bielack SS, Flanagan AM, Gill J, Heymann D, Janeway KA, Livingston JA, Roberts RD, Strauss SJ, Gorlick R. Osteosarcoma. Nat Rev Dis Primers. 2022;8:77.

    Article 
    PubMed 

    Google Scholar
     

  • Gill J, Gorlick R. Advancing remedy for osteosarcoma. Nat Rev Clin Oncol. 2021;18:609–24.

    Article 
    PubMed 

    Google Scholar
     

  • Meltzer PS, Helman LJ. New Horizons within the Remedy of Osteosarcoma. N Engl J Med. 2021;385:2066–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shoaib Z, Fan TM, Irudayaraj JMK. Osteosarcoma mechanobiology and therapeutic targets. Br J Pharmacol. 2022;179:201–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du H, Zhang D, Xu R, Guan S, Chen S, Qian S, Liu X, Xie J, Peng F. Ferric oxide nanosheet-engineered mg alloy for synergetic osteosarcoma photothermal/chemodynamic remedy. J Mater Sci Technol. 2023;138:203–13.

    Article 
    CAS 

    Google Scholar
     

  • Dong S, Lin Ok, Wang X, Chen Y, Yu L. Magnetic hyperthermia–synergistic H2O2 self-sufficient Catalytic suppression of Osteosarcoma with enhanced bone-regeneration bioactivity by 3D-Printing Composite scaffolds. Adv Funct Mater 2020, 30.

  • Wang L, Yang Q, Huo M, Lu D, Gao Y, Chen Y, Xu H. Engineering single-Atomic Iron-Catalyst-Built-in 3D-Printed Bioscaffolds for Osteosarcoma Destruction with Antibacterial and bone defect regeneration Bioactivity. Adv Mater. 2021;33:e2100150.

    Article 
    PubMed 

    Google Scholar
     

  • Liang Y, Liao C, Guo X, Li G, Yang X, Yu J, Zhong J, Xie Y, Zheng L, Zhao J. RhRu Alloy-Anchored MXene Nanozyme for Synergistic Osteosarcoma Remedy. Small. 2023;19:e2205511.

    Article 
    PubMed 

    Google Scholar
     

  • Masters EA, Ricciardi BF, Bentley KLM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and scientific administration. Nat Rev Microbiol. 2022;20:385–400.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosseini Hooshiar M, Badkoobeh A, Kolahdouz S, Tadayonfard A, Mozaffari A, Nasiri Ok, Salari S, Safaralizadeh R, Yasamineh S. The potential use of nanozymes as an antibacterial brokers in oral an infection, periodontitis, and peri-implantitis. J Nanobiotechnol. 2024;22:207.

    Article 
    CAS 

    Google Scholar
     

  • Qin L, Yang S, Zhao C, Yang J, Li F, Xu Z, Yang Y, Zhou H, Li Ok, Xiong C, et al. Prospects and challenges for the applying of tissue engineering applied sciences within the therapy of bone infections. Bone Res. 2024;12:28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Ok, Zou Y, Lin C, Zhang L, Tan M, Li M, Wu J, Li X, He Y, Liu P, et al. Cascade catalysis nanozyme for interfacial functionalization in combating implant infections related to diabetes through sonodynamic remedy and adaptive immune activation. Biomaterials. 2024;311:122649.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Z, Tune Z, Guo R, Zhang M, Wu J, Pan M, Du Q, He Y, Wang X, Gao L, et al. Mn single-atom Nanozyme Functionalized 3D-Printed Bioceramic scaffolds for enhanced antibacterial exercise and bone regeneration. Adv Healthc Mater. 2024;13:e2303182.

    Article 
    PubMed 

    Google Scholar
     

  • Mei J, Xu D, Wang L, Kong L, Liu Q, Li Q, Zhang X, Su Z, Hu X, Zhu W, et al. Biofilm Microenvironment-Responsive Self-Meeting Nanoreactors for all-Stage Biofilm Related An infection via bacterial cuproptosis-like dying and macrophage re-rousing. Adv Mater. 2023;35:e2303432.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu W, Mei J, Zhang X, Zhou J, Xu D, Su Z, Fang S, Wang J, Zhang X, Zhu C. Photothermal Nanozyme-based Microneedle Patch towards Refractory bacterial biofilm an infection through Iron-actuated Janus Ion Remedy. Adv Mater. 2022;34:e2207961.

    Article 
    PubMed 

    Google Scholar
     

  • Yang X, Xiang J, Su W, Guo J, Deng J, Tang L, Li G, Liang Y, Zheng L, He M et al. Modulating pt nanozyme through the use of remoted cobalt atoms to boost catalytic exercise for assuaging osteoarthritis. Nano In the present day 2023, 49.

  • Leave a Reply

    Your email address will not be published. Required fields are marked *