The progress and way forward for the therapy of Candida albicans infections primarily based on nanotechnology | Journal of Nanobiotechnology

  • Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Opinions Illness Primers. 2018;4:1–20.


    Google Scholar
     

  • Koehler P, Stecher M, Cornely OA, Koehler D, Vehreschild MJ, Bohlius J, et al. Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin Microbiol Infect. 2019;25:1200–12.

  • Hosseini-Moghaddam SM, Ouédraogo A, Naylor KL, Bota SE, Husain S, Nash DM, Paterson JM. Incidence and outcomes of invasive fungal an infection amongst strong organ transplant recipients: a inhabitants‐primarily based cohort examine. Transpl Infect Illness. 2020;22:13250.

    Article 

    Google Scholar
     

  • Denning DW. International incidence and mortality of extreme fungal illness. Lancet Infect Dis. 2024;24:428–38.

    Article 

    Google Scholar
     

  • Liu N, Zhou J, Jiang T, Tarsio M, Yu F, Zheng X, Qi W, Liu L, Tan J, Wei L, et al. A twin motion small molecule enhances azoles and overcomes resistance via co-targeting Pdr5 and Vma1: Osimertinib targets Pdr5 and Vma1. Translational Analysis: J Lab Clin Med. 2022;247:39–57.

    Article 
    CAS 

    Google Scholar
     

  • Liu N-N, Zhou J, Jiang T, Tarsio M, Yu F, Zheng X, Qi W, Liu L, Tan J-c, Wei L. A twin motion small molecule enhances azoles and overcomes resistance via co-targeting Pdr5 and Vma1. Translational Res. 2022;247:39–57.

    Article 
    CAS 

    Google Scholar
     

  • Calderone RA, Fonzi WA. Virulence elements of Candida albicans. Tendencies Microbiol. 2001;9:327–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wenzel RP. Nosocomial candidemia: danger elements and attributable mortality. Clin Infect Dis. 1995;20:1531–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Enoch DA, Yang H, Aliyu SH, Micallef C. The altering epidemiology of invasive fungal infections. Hum Fungal Pathogen Identification: Strategies Protocols. 2017;10:17–65.

    Article 

    Google Scholar
     

  • Roemer T, Krysan DJ. Antifungal drug improvement: challenges, unmet medical wants, and new approaches. Chilly Spring Harbor Perspect Med. 2014;4:a019703.

    Article 

    Google Scholar
     

  • Lombardi T, Budtz-Jørgensen E. Therapy of denture-induced stomatitis: a evaluate. Eur J Prosthodont Restor Dent. 1993;2:17–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Nett JE, Andes DR. Antifungal brokers: spectrum of exercise, pharmacology, and medical indications. Infect Illness Clin. 2016;30:51–83.


    Google Scholar
     

  • Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, Douglas C, Abruzzo G, Flattery A, Kong L. Discovery of novel antifungal (1, 3)-β-D-glucan synthase inhibitors. Antimicrob Brokers Chemother. 2000;44:368–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beyda ND, Lewis RE, Garey KW. Echinocandin resistance in Candida species: mechanisms of decreased susceptibility and therapeutic approaches. Ann Pharmacother. 2012;46:1086–96.

    Article 
    PubMed 

    Google Scholar
     

  • Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM, Bowyer P, Bromley M, Brüggemann R, Garber G, Cornely OA. Tackling the rising risk of antifungal resistance to human well being. Nat Rev Microbiol. 2022;20:557–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donnelly RF, McCarron PA, Tunney MM. Antifungal photodynamic remedy. Microbiol Res. 2008;163:1–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Butts A, Krysan DJ. Antifungal drug discovery: one thing outdated and one thing new. PLoS Pathog. 2012;8:e1002870.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stone NR, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome®): a evaluate of the pharmacokinetics, pharmacodynamics, medical expertise and future instructions. Medicine. 2016;76:485–500.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, Rutakingirwa MK, Ssebambulidde Ok, Tugume L, Rhein J. Single-dose liposomal amphotericin B therapy for cryptococcal meningitis. N Engl J Med. 2022;386:1109–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Q, Zou J, Chen Z, He W, Wu W. Present analysis developments of nanomedicines. Acta Pharm Sinica B. 2023;13:4391–416.

    Article 
    CAS 

    Google Scholar
     

  • Leenders A, Marie S. The usage of lipid formulations of amphotericin B for systemic fungal infections. Leukemia. 1996;10:1570–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheeseman S, Christofferson AJ, Kariuki R, Cozzolino D, Daeneke T, Crawford RJ, Truong VK, Chapman J, Elbourne A. Antimicrobial metallic nanomaterials: from passive to stimuli-activated functions. Adv Sci. 2020;7:1902913.

    Article 
    CAS 

    Google Scholar
     

  • Araujo VHS, Duarte JL, Carvalho GC, Silvestre ALP, Fonseca-Santos B, Marena GD, Ribeiro TC, dos Santos Ramos MA, Bauab TM, Chorilli M. Nanosystems in opposition to candidiasis: a evaluate of research carried out over the past 20 years. Crit Rev Microbiol. 2020;46:508–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li B, Pan L, Zhang H, Xie L, Wang X, Shou J, Qi Y, Yan X. Latest developments on utilizing nanomaterials to fight Candida albicans. Entrance Chem. 2021;9:813973.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory ailments: prevention and therapy. Sign Transduct Goal Remedy. 2024;9:34.

    Article 

    Google Scholar
     

  • Choi V, Rohn JL, Stoodley P, Carugo D, Stride E. Drug supply methods for antibiofilm remedy. Nat Rev Microbiol. 2023;21:555–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeQueiroz G, Day D. Antimicrobial exercise and effectiveness of a mixture of sodium hypochlorite and hydrogen peroxide in killing and eradicating Pseudomonas aeruginosa biofilms from surfaces. J Appl Microbiol. 2007;103:794–802.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nat Rev Microbiol. 2020;18:319–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costerton JW, Cheng Ok, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ. Bacterial biofilms in nature and illness. Annual Opinions Microbiol. 1987;41:435–64.

    Article 
    CAS 

    Google Scholar
     

  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a typical reason for persistent infections. Science. 1999;284:1318–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis SC, Martinez L, Kirsner R. The diabetic foot: the significance of biofilms and wound mattress preparation. Curr Diab Rep. 2006;6:439–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith AW. Biofilms and antibiotic remedy: is there a job for combating bacterial resistance by way of novel drug supply methods? Adv Drug Deliv Rev. 2005;57:1539–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: improvement, structure, and drug resistance. J Bacteriol. 2001;183:5385–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nett JE, Crawford Ok, Marchillo Ok, Andes DR. Function of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob Brokers Chemother. 2010;54:3505–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Fattani MA, Douglas LJ. Penetration of Candida biofilms by antifungal brokers. Antimicrob Brokers Chemother. 2004;48:3291–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andes DR, Safdar N, Baddley JW, Playford G, Reboli AC, Rex JH, Sobel JD, Pappas PG, Kullberg BJ. Impression of therapy technique on outcomes in sufferers with candidemia and different types of invasive candidiasis: a patient-level quantitative evaluate of randomized trials. Clin Infect Dis. 2012;54:1110–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Wu H, Xu Ok. Photodynamic remedy and the appliance of antitumor immunotherapy for tumor therapy. Zhongguo Zhong Liu Lin Chuang. 2021;48:35–9.


    Google Scholar
     

  • Jia Q, Tune Q, Li P, Huang W. Rejuvenated photodynamic remedy for bacterial infections. Adv Healthc Mater. 2019;8:1900608.

    Article 

    Google Scholar
     

  • Zhou C, Peng C, Shi C, Jiang M, Chau JH, Liu Z, Bai H, Kwok RT, Lam JW, Shi Y. Mitochondria-specific aggregation-induced emission luminogens for selective photodynamic killing of fungi and efficacious therapy of keratitis. ACS Nano. 2021;15:12129–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang N, Yuan S, Luo Y, Wang A-J, Solar Ok, Liu N-N, Tao Ok. Nanoparticle-based photodynamic inhibition of Candida albicans Biofilms with Interfering Quorum sensing. ACS Omega. 2023;8:4357–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovács R, Majoros L. Fungal quorum-sensing molecules: a evaluate of their antifungal impact in opposition to Candida biofilms. J Fungi. 2020;6:99.

    Article 

    Google Scholar
     

  • Maliszewska I, Lisiak B, Popko Ok, Matczyszyn Ok. Enhancement of the efficacy of photodynamic inactivation of Candida albicans with using biogenic gold nanoparticles. Photochem Photobiol. 2017;93:1081–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madkhali OA. A complete evaluate on potential functions of metallic nanoparticles as antifungal therapies to fight human fungal ailments. Saudi Pharm J. 2023;31:101733.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Tang H, Jiang X. Deploying gold nanomaterials in combating multi-drug-resistant micro organism. ACS Nano. 2022;16:10066–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tabassum N, Khan F, Kang M-G, Jo D-M, Cho Ok-J, Kim Y-M. Inhibition of Polymicrobial Biofilms of Candida albicansStaphylococcusaureus/Streptococcus mutans by Fucoidan–Gold Nanoparticles. Mar Medicine. 2023;21:123.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He J, Ye Y, Zhang D, Yao Ok, Zhou M. Visualized Gallium/Lyticase-Built-in Antifungal Technique for Fungal Keratitis Therapy. Adv Mater. 2022;34:2206437.

    Article 
    CAS 

    Google Scholar
     

  • Good JR. The antifungal pipeline: a actuality test. Nat Rev Drug Discovery. 2017;16:603–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, Nieuwkoop AJ, Comellas G, Maryum N, Wang S. Amphotericin kinds an extramembranous and fungicidal sterol sponge. Nat Chem Biol. 2014;10:400–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letscher-Bru V, Herbrecht R. Caspofungin: the primary consultant of a brand new antifungal class. J Antimicrob Chemother. 2003;51:513–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal drug resistance: molecular mechanisms in Candida albicans and past. Chem Rev. 2020;121:3390–411.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao J, Wang H, Li Z, Wong AH-H, Wang Y-Z, Guo Y, Lin X, Zeng G, Liu H, Wang Y. Candida albicans good points azole resistance by altering sphingolipid composition. Nat Commun. 2018;9:4495.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemke A, Kiderlen A, Kayser O. Amphotericin b. Appl Microbiol Biotechnol. 2005;68:151–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao L, Tian R, Chen X. Cell-membrane-mimicking nanodecoys in opposition to infectious ailments. ACS Nano. 2020;14:2569–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sprint P, Piras AM, Sprint M. Cell membrane coated nanocarriers-an environment friendly biomimetic platform for focused remedy. J Managed Launch. 2020;327:546–70.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Luo J, Chen X, Liu W, Chen T. Cell membrane coating know-how: a promising technique for biomedical functions. Nano-Micro Lett. 2019;11:1–46.

    Article 

    Google Scholar
     

  • Xie J, Shen Q, Huang Ok, Zheng T, Cheng L, Zhang Z, et al. Oriented meeting of cell-mimicking nanoparticles by way of a molecular affinity technique for focused drug supply. ACS Nano. 2019;13:5268–77.

  • Li B, Wang W, Zhao L, Wu Y, Li X, Yan D, Gao Q, Yan Y, Zhang J, Feng Y. Photothermal remedy of tuberculosis utilizing focusing on pre-activated macrophage membrane-coated nanoparticles. Nat Nanotechnol. 2024;19:834–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu J, Xie R, Gao R, Zhao Y, Yodsanit N, Zhu M, et al. Multimodal nanoimmunotherapy engages neutrophils to eradicate Staphylococcus aureus infections. Nat Nanotechnol 2024;19:1032–43.

  • Deerhake ME, Shinohara ML. Rising roles of Dectin-1 in noninfectious settings and within the CNS. Tendencies Immunol. 2021;42:891–903.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol. 2006;6:33–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ambati S, Ferarro AR, Kang SE, Lin J, Lin X, Momany M, Lewis ZA, Meagher RB. Dectin-1-targeted antifungal liposomes exhibit enhanced efficacy. MSphere. 2019;4:e00025–00019.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnan N, Fang RH, Zhang L. Engineering of stimuli-responsive self-assembled biomimetic nanoparticles. Adv Drug Deliv Rev. 2021;179:114006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fatima M, Almalki WH, Khan T, Sahebkar A, Kesharwani P. Harnessing the facility of Stimuli-Responsive nanoparticles as an efficient therapeutic drug supply system. Adv Mater. 2024;36:2312939.

    Article 
    CAS 

    Google Scholar
     

  • Park S-C, Kim Y-M, Lee J-Ok, Kim N-H, Kim E-J, Heo H, Lee M-Y, Lee JR, Jang M-Ok. Concentrating on and synergistic motion of an antifungal peptide in an antibiotic drug-delivery system. J Managed Launch. 2017;256:46–55.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Liu X, Duan Y, Huang Y. An infection microenvironment-related antibacterial nanotherapeutic methods. Biomaterials. 2022;280:121249.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedman AJ, Phan J, Schairer DO, Champer J, Qin M, Pirouz A, Blecher-Paz Ok, Oren A, Liu PT, Modlin RL. Antimicrobial and anti inflammatory exercise of chitosan–alginate nanoparticles: a focused remedy for cutaneous pathogens. J Make investments Dermatology. 2013;133:1231–9.

    Article 
    CAS 

    Google Scholar
     

  • Khalaf EM, Abood NA, Atta RZ, Ramírez-Coronel AA, Alazragi R, Parra RMR, Abed OH, Abosaooda M, Jalil AT, Mustafa YF. Latest progressions in biomedical and pharmaceutical functions of chitosan nanoparticles: a complete evaluate. Int J Biol Macromol. 2023;231:123354.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohamed M, Fouad S, Elshoky HA, Mohammed GM, Salaheldin TA. Antibacterial impact of gold nanoparticles in opposition to Corynebacterium pseudotuberculosis. Int J Veterinary Sci Med. 2017;5:23–9.

    Article 

    Google Scholar
     

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. Overview on Zinc Oxide nanoparticles: antibacterial exercise and toxicity mechanism. Nano-Micro Lett. 2015;7:219–42.

    Article 
    CAS 

    Google Scholar
     

  • Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik Ok, Mallick B, Jha S. Antimicrobial exercise of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep. 2015;5:14813.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, et al. Understanding the antimicrobial mechanism of TiO2-based nanocomposite movies in a pathogenic bacterium. Sci Rep 2014;4:4134.

  • Radhakrishnan VS, Mudiam MKR, Kumar M, Dwivedi SP, Singh SP, Prasad T. Silver nanoparticles induced alterations in a number of mobile targets, that are crucial for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). Int J Nanomed. 2018;13:2647.

    Article 
    CAS 

    Google Scholar
     

  • Ashrafi M, Bayat M, Mortazavi P, Hashemi SJ, Meimandipour A. Antimicrobial impact of chitosan–silver–copper nanocomposite on Candida albicans. J Nanostructure Chem. 2020;10:87–95.

    Article 
    CAS 

    Google Scholar
     

  • Youssef A, Abd El-Aziz M, Abd El-Sayed ES, Moussa M, Turky G, Kamel S. Rational design and electrical examine of conducting bionanocomposites hydrogel primarily based on chitosan and silver nanoparticles. Int J Biol Macromol. 2019;140:886–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Pornpattananangkul D, Hu C-M, Huang C-M. Improvement of nanoparticles for antimicrobial drug supply. Curr Med Chem. 2010;17:585–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huh AJ, Kwon YJ. Nanoantibiotics: a brand new paradigm for treating infectious ailments utilizing nanomaterials within the antibiotics resistant period. J Managed Launch. 2011;156:128–45.

    Article 
    CAS 

    Google Scholar
     

  • Vincent BM, Langlois J-B, Srinivas R, Lancaster AK, Scherz-Shouval R, Whitesell L, Tidor B, Buchwald SL, Lindquist S. A fungal-selective cytochrome bc1 inhibitor impairs virulence and prevents the evolution of drug resistance. Cell Chem Biology. 2016;23:978–91.

    Article 
    CAS 

    Google Scholar
     

  • Rex JH, Walsh TJ, Nettleman M, Anaissie EJ, Bennett JE, Bow EJ, Carillo-Munoz A, Chavanet P, Cloud GA, Denning DW. Want for various trial designs and analysis methods for therapeutic research of invasive mycoses. Clin Infect Dis. 2001;33:95–106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal medication challenges human well being and meals safety. Science. 2018;360:739–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Healey KR, Zhao Y, Perez WB, Lockhart SR, Sobel JD, Farmakiotis D. Prevalent mutator genotype recognized in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat Commun. 2016;7:11128.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MM, Arriaga EA. Bioanalysis of eukaryotic organelles. Chem Rev. 2013;113:2733–811.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jhaveri A, Torchilin V. Intracellular supply of nanocarriers and focusing on to subcellular organelles. Professional Opin Drug Deliv. 2016;13:49–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen WH, Luo GF, Zhang XZ. Latest advances in subcellular focused most cancers remedy primarily based on practical supplies. Adv Mater. 2019;31:1802725.

    Article 

    Google Scholar
     

  • BENNETT JE: Flucytosine. Ann Intern Med. 1977;86:319–22.

    Article 

    Google Scholar
     

  • Hope WW, Tabernero L, Denning DW, Anderson MJ. Molecular mechanisms of main resistance to Flucytosine in Candida albicans. Antimicrob Brokers Chemother. 2004;48:4377–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsiao CR, Huang L, Bouchara J-P, Barton R, Li HC, Chang TC. Identification of medically vital molds by an oligonucleotide array. J Clin Microbiol. 2005;43:3760–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blecher Ok, Nasir A, Friedman A. The rising function of nanotechnology in combating infectious illness. Virulence. 2011;2:395–401.

    Article 
    PubMed 

    Google Scholar
     

  • Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ. The potential of nitric oxide releasing therapies as antimicrobial brokers. Virulence. 2012;3:271–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin Y, Wang J, Lv Q, Han B. Latest progress in Analysis on Mitochondrion-targeted antifungal medication: a evaluate. Antimicrob Brokers Chemother. 2023;67:e00003–00023.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murante D, Hogan DA. New mitochondrial targets in fungal pathogens. Mbio. 2019;10:e02258–02219.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kummer E, Ban N. Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol. 2021;22:307–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Souza GG, Weissig V. Subcellular focusing on: a brand new frontier for drug-loaded pharmaceutical nanocarriers and the idea of the magic bullet. Professional Opin Drug Deliv. 2009;6:1135–48.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang D, Wen L, Huang R, Wang H, Hu X, Xing D. Mitochondrial particular photodynamic remedy by rare-earth nanoparticles mediated near-infrared graphene quantum dots. Biomaterials. 2018;153:14–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piktel E, Suprewicz Ł, Depciuch J, Cieśluk M, Chmielewska S, Durnaś B, Król G, Wollny T, Deptuła P, Kochanowicz J. Rod-shaped gold nanoparticles exert potent candidacidal exercise and reduce the adhesion of fungal cells. Nanomedicine. 2020;15:2733–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang Is, Lee J, Hwang JH, Kim KJ, Lee DG. Silver nanoparticles induce apoptotic cell dying in Candida albicans via the rise of hydroxyl radicals. FEBS J. 2012;279:1327–38.

    Article 
    PubMed 

    Google Scholar
     

  • McLellan CA, Vincent BM, Solis NV, Lancaster AK, Sullivan LB, Hartland CL, et al. Inhibiting mitochondrial phosphate transport as an unexploited antifungal technique. Nat Chem Biol. 2018;14:135–41.

  • Yamashita Ok, Miyazaki T, Fukuda Y, Mitsuyama J, Saijo T, Shimamura S, et al. The novel arylamidine T-2307 selectively disrupts yeast mitochondrial perform by inhibiting respiratory chain complexes. Antimicrob Brokers Chemother. 2019;63:e00374-19.

  • Wiederhold NP, Najvar LK, Fothergill AW, Bocanegra R, Olivo M, McCarthy DI, et al. The novel arylamidine T-2307 maintains in vitro and in vivo exercise in opposition to echinocandin-resistant Candida albicans. Antimicrob Brokers Chemother. 2015;59:1341–3.

  • Wu Y, Jiang W, Cong Z, Chen Ok, She Y, Zhong C, Zhang W, Chen M, Zhou M, Shao N. An efficient technique to develop potent and selective antifungal brokers from cell penetrating peptides in tackling drug-resistant invasive fungal infections. J Med Chem. 2022;65:7296–311.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Helmerhorst EJ, Breeuwer P, van’t Hof W, Walgreen-Weterings E, Oomen LC, Veerman EC, Amerongen AVN, Abee T. The mobile goal of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem. 1999;274:7286–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Most cancers metabolism: a therapeutic perspective. Nat Opinions Clin Oncol. 2017;14:11–31.

    Article 
    CAS 

    Google Scholar
     

  • Wijnants S, Vreys J, Van Dijck P. Attention-grabbing antifungal drug targets within the central metabolism of Candida albicans. Tendencies Pharmacol Sci. 2022;43:69–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Zhang Z, Chen Z, Li Y, Su S, Solar S. Potential antifungal targets primarily based on glucose metabolism pathways of Candida albicans. Entrance Microbiol. 2020;11:296.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vesely EM, Williams RB, Konopka JB, Lorenz MC. N-Acetylglucosamine metabolism promotes survival of Candida albicans within the phagosome. Msphere. 2017;2:00357–00317.

    Article 

    Google Scholar
     

  • Alves R, Mota S, Silva S, Rodrigues F, Brown CP, Henriques AJ, Casal M, Paiva M. The carboxylic acid transporters Jen1 and Jen2 have an effect on the structure and fluconazole susceptibility of Candida albicans biofilm within the presence of lactate. Biofouling. 2017;33:943–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ene IV, Adya AK, Wehmeier S, Model AC, MacCallum DM, Gow NA, Brown AJ. Host carbon sources modulate cell wall structure, drug resistance and virulence in a fungal pathogen. Cell Microbiol. 2012;14:1319–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji Y, Han Z, Ding H, Xu X, Wang D, Zhu Y, An F, Tang S, Zhang H, Deng J. Enhanced eradication of bacterial/fungi biofilms by glucose oxidase-modified magnetic nanoparticles as a possible therapy for persistent endodontic infections. ACS Appl Mater Interfaces. 2021;13:17289–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodaki A, Bohovych IM, Enjalbert B, Younger T, Odds FC, Gow NA, Brown AJ. Glucose promotes stress resistance within the fungal pathogen Candida albicans. Mol Biol Cell. 2009;20:4845–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dietl A-M, Misslinger M, Aguiar MM, Ivashov V, Teis D, Pfister J, et al. The siderophore transporter Sit1 determines susceptibility to the antifungal VL-2397. Antimicrob Brokers Chemother. 2019;63:e00807-19.

  • Nakamura I, Yoshimura S, Masaki T, Takase S, Ohsumi Ok, Hashimoto M, Furukawa S, Fujie A. ASP2397: a novel antifungal agent produced by Acremonium Persicinum MF-347833. J Antibiot. 2017;70:45–51.

    Article 
    CAS 

    Google Scholar
     

  • Yu Q, Jia C, Dong Y, Zhang B, Xiao C, Chen Y, Wang Y, Li X, Wang L, Zhang B. Candida albicans autophagy, not a bystander: its function in tolerance to ER stress-related antifungal medication. Fungal Genet Biol. 2015;81:238–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown AJ, Brown GD, Netea MG, Gow NA. Metabolism impacts upon Candida immunogenicity and pathogenicity at a number of ranges. Tendencies Microbiol. 2014;22:614–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mora-Montes HM, Bates S, Netea MG, Díaz-Jiménez DF, López-Romero E, Zinker S, Ponce-Noyola P, Kullberg BJ, Brown AJ, Odds FC. Endoplasmic reticulum α-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and regular host-fungus interplay. Eukaryot Cell. 2007;6:2184–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lecomte F, Ismail N, Excessive S. Making membrane proteins on the mammalian endoplasmic reticulum. Biochem Soc Trans. 2003;31:1248–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almeida C, Amaral MD. A central function of the endoplasmic reticulum within the cell emerges from its practical contact websites with a number of organelles. Cell Mol Life Sci. 2020;77:4729–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elias R, Benhamou RI, Jaber QZ, Dorot O, Zada SL, Oved Ok, Pichinuk E, Fridman M. Antifungal exercise, mode of motion variability, and subcellular distribution of coumarin-based antifungal azoles. Eur J Med Chem. 2019;179:779–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benhamou RI, Jaber QZ, Herzog IM, Roichman Y, Fridman M. Fluorescent monitoring of the endoplasmic reticulum in stay pathogenic fungal cells. ACS Chem Biol. 2018;13:3325–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benhamou RI, Bibi M, Berman J, Fridman M. Localizing antifungal medication to the proper organelle can markedly improve their efficacy. Angew Chem. 2018;130:6338–43.

    Article 

    Google Scholar
     

  • Zhang W, Yu M, Xi Z, Nie D, Dai Z, Wang J, Qian Ok, Weng H, Gan Y, Xu L. Most cancers cell membrane-camouflaged nanorods with endoplasmic reticulum focusing on for improved antitumor remedy. ACS Appl Mater Interfaces. 2019;11:46614–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Kaur G, Chen Y, Santos A, Losic D, Evdokiou A. Bioinert anodic alumina nanotubes for focusing on of endoplasmic reticulum stress and autophagic signaling: a combinatorial nanotube-based drug supply system for enhancing most cancers remedy. ACS Appl Mater Interfaces. 2015;7:27140–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi L, Gao X, Yuan W, Xu L, Deng H, Wu C, Yang J, Jin X, Zhang C, Zhu X. Endoplasmic reticulum–focused fluorescent nanodot with giant Stokes Shift for Vesicular Transport Monitoring and long-term bioimaging. Small. 2018;14:1800223.

    Article 

    Google Scholar
     

  • Ma X, Gong N, Zhong L, Solar J, Liang X-J. Way forward for nanotherapeutics: focusing on the mobile sub-organelles. Biomaterials. 2016;97:10–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi Y, Wang S, Wu J, Jin X, You J. Pharmaceutical methods for endoplasmic reticulum-targeting and their prospects of software. J Managed Launch. 2021;329:337–52.

    Article 
    CAS 

    Google Scholar
     

  • Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a complete evaluate on system design for enabling precision oncology. Sign Transduct Goal Remedy. 2022;7:379.

    Article 
    CAS 

    Google Scholar
     

  • Wang J, Fang X, Liang W. Pegylated phospholipid micelles induce endoplasmic reticulum-dependent apoptosis of most cancers cells however not regular cells. ACS Nano. 2012;6:5018–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cowen LE, Lindquist S. Hsp90 potentiates the Speedy Evolution of New traits: Drug Resistance in Various Fungi. Science. 2005;309:2185–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schell R, Mullis M, Ehrenreich IM. Modifiers of the genotype–phenotype map: Hsp90 and past. PLoS Biol. 2016;14:e2001015.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang DS, Leblanc EV, Shekhar-Guturja T, Robbins N, Krysan DJ, Pizarro JC, Whitesell L, Cowen LE, Brown LE. Design and synthesis of fungal-selective resorcylate aminopyrazole Hsp90 inhibitors. J Med Chem. 2019;63:2139–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitesell L, Robbins N, Huang DS, McLellan CA, Shekhar-Guturja T, Leblanc EV, Nation CS, Hui R, Hutchinson A, Collins C, et al. Structural foundation for species-selective focusing on of Hsp90 in a pathogenic fungus. Nat Commun. 2019;10:402.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M, Spicka I, Petrucci MT, Palumbo A, Samoilova OS. Bortezomib plus Melphalan and prednisone for preliminary therapy of a number of myeloma. N Engl J Med. 2008;359:906–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roemer T, Davies J, Giaever G, Nislow C. Bugs, medication and chemical genomics. Nat Chem Biol. 2012;8:46–56.

    Article 
    CAS 

    Google Scholar
     

  • Xu D, Ondeyka J, Harris GH, Zink D, Kahn JN, Wang H, Payments G, Platas G, Wang W, Szewczak AA. Isolation, construction, and organic actions of fellutamides C and D from an undescribed Metulocladosporiella (Chaetothyriales) utilizing the genome-wide Candida albicans health take a look at. J Nat Prod. 2011;74:1721–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roemer T, Xu D, Singh SB, Parish CA, Harris G, Wang H, Davies JE, Payments GF. Confronting the challenges of pure product-based antifungal discovery. Chem Biol. 2011;18:148–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gutierrez-Gongora D, Geddes-McAlister J. From naturally-sourced protease inhibitors to new therapies for fungal infections. J Fungi. 2021;7:1016.

    Article 
    CAS 

    Google Scholar
     

  • Wójcik-Mieszawska S, Lewtak Ok, Skwarek E, Dębowski D, Gitlin-Domagalska A, Nowak J, Wydrych J, Pawelec J, Fiołka MJ. Autophagy of Candida albicans cells after the motion of earthworm Venetin-1 nanoparticle with protease inhibitor exercise. Sci Rep. 2023;13:14228.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zarnowski R, Sanchez H, Covelli AS, Dominguez E, Jaromin A, Bernhardt J, Mitchell KF, Heiss C, Azadi P, Mitchell A. Candida albicans biofilm–induced vesicles confer drug resistance via matrix biogenesis. PLoS Biol. 2018;16:e2006872.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigues ML, Franzen AJ, Nimrichter L, Miranda Ok. Vesicular mechanisms of site visitors of fungal molecules to the extracellular area. Curr Opin Microbiol. 2013;16:414–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarnowski R, Noll A, Chevrette MG, Sanchez H, Jones R, Anhalt H, Fossen J, Jaromin A, Currie C, Nett JE. Coordination of fungal biofilm improvement by extracellular vesicle cargo. Nat Commun. 2021;12:6235.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang F, Zhao M, Braun DR, Ericksen SS, Piotrowski JS, Nelson J, Peng J, Ananiev GE, Chanana S, Barns Ok. A marine microbiome antifungal targets urgent-threat drug-resistant fungi. Science. 2020;370:974–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao M, Zhang F, Zarnowski R, Barns Ok, Jones R, Fossen J, Sanchez H, Rajski SR, Audhya A, Bugni TS. Turbinmicin inhibits Candida biofilm progress by disrupting fungal vesicle–mediated trafficking. J Clin Investig. 2021;131:e145123.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman A. Dimension-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem. 2000;275:1625–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seksek O, Biwersi J, Verkman A. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol. 1997;138:131–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoenigl M, Sprute R, Egger M, Arastehfar A, Cornely OA, Krause R, Lass-Flörl C, Prattes J, Spec A, Thompson GR. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Medicine. 2021;81:1703–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larwood DJ. Nikkomycin Z—prepared to fulfill the promise? J Fungi. 2020;6:261.

    Article 
    CAS 

    Google Scholar
     

  • Lipa-Castro A, Nicolas V, Angelova A, Mekhloufi G, Prost B, Chéron M, Faivre V, Barratt G. Cochleate formulations of Amphotericin b designed for oral administration utilizing a naturally occurring phospholipid. Int J Pharm. 2021;603:120688.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fatima I, Rasul A, Shah S, Saadullah M, Islam N, Khames A, Salawi A, Ahmed MM, Almoshari Y, Abbas G. Novasomes as nano-vesicular carriers to reinforce topical supply of fluconazole: a brand new method to deal with fungal infections. Molecules. 2022;27:2936.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfaller M, Messer S, Georgopapadakou N, Martell L, Besterman J, Diekema D. Exercise of MGCD290, a Hos2 histone deacetylase inhibitor, together with azole antifungals in opposition to opportunistic fungal pathogens. J Clin Microbiol. 2009;47:3797–804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gómez-Garzón M, Gutiérrez-Castañeda LD, Gil C, Escobar CH, Rozo AP, González ME, Sierra EV. Inhibition of the filamentation of Candida albicans by Borojoa patinoi silver nanoparticles. SN Appl Sci. 2021;3:1–8.

    Article 

    Google Scholar
     

  • Antinori S, Milazzo L, Sollima S, Galli M, Corbellino M. Candidemia and invasive candidiasis in adults: a story evaluate. Eur J Intern Med. 2016;34:21–8.

    Article 
    PubMed 

    Google Scholar
     

  • Thomson DD, Wehmeier S, Byfield FJ, Janmey PA, Caballero-Lima D, Crossley A, et al. Contact‐induced apical asymmetry drives the thigmotropic responses of Candida albicans hyphae. Cell Microbiol. 2015;17:342–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science. 1999;283:1535–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, Edwards JE Jr, Filler SG, Hube B. The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog. 2008;4:e1000217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jimenez-Lopez C, Lorenz MC. Fungal immune evasion in a mannequin host–pathogen interplay: Candida albicans versus macrophages. PLoS Pathog. 2013;9:e1003741.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saville SP, Lazzell AL, Bryant AP, Fretzen A, Monreal A, Solberg EO, Monteagudo C, Lopez-Ribot JL, Milne GT. Inhibition of filamentation can be utilized to deal with disseminated candidiasis. Antimicrob Brokers Chemother. 2006;50:3312–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Model A, MacCallum DM, Brown AJ, Gow NA, Odds FC. Ectopic expression of URA3 can affect the virulence phenotypes and proteome of Candida albicans however will be overcome by focused reintegration of URA3 on the RPS10 locus. Eukaryot Cell. 2004;3:900–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto AP, Rosseti IB, Carvalho ML, da Silva BGM, Alberto-Silva C, Costa MS. Photodynamic antimicrobial chemotherapy (PACT), utilizing Toluidine blue O inhibits the viability of biofilm produced by Candida albicans at totally different phases of improvement. Photodiagn Photodyn Ther. 2018;21:182–9.

    Article 
    CAS 

    Google Scholar
     

  • Carvalho ML, Pinto AP, Raniero LJ, Costa MS. Biofilm formation by Candida albicans is inhibited by photodynamic antimicrobial chemotherapy (PACT), utilizing chlorin e6: improve in each ROS manufacturing and membrane permeability. Lasers Med Sci. 2018;33:647–53.

    Article 
    PubMed 

    Google Scholar
     

  • Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. The biology and future prospects of antivirulence therapies. Nat Rev Microbiol. 2008;6:17–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dickey SW, Cheung GY, Otto M. Completely different medication for dangerous bugs: antivirulence methods within the age of antibiotic resistance. Nat Rev Drug Discovery. 2017;16:457–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen RC, Popat R, Diggle SP, Brown SP. Concentrating on virulence: can we make evolution-proof medication? Nat Rev Microbiol. 2014;12:300–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henderson J, Nickerson JF. Bacterial endocarditis with Candida albicans superinfection. Can Med Assoc J. 1964;90:452.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Araújo D, Gaspar R, Mil-Homens D, Henriques M, Silva BF, Silva S. Cationic lipid-based formulations for encapsulation and supply of anti-EFG1 2′ O MethylRNA oligomer. Med Mycol. 2021;60:myac030.

    Article 

    Google Scholar
     

  • Barbosa A, Araújo D, Henriques M, Silva S. The mixed software of the anti-RAS1 and anti-RIM101 2’-O MethylRNA oligomers enhances Candida albicans filamentation management. Med Mycol. 2021;59:1024–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao M, Zhang M, Xu Ok, Wu Ok, Xie R, Li R, Wang Q, Liu W, Wang W, Wang X. Antimicrobial impact of extracellular vesicles derived from human oral mucosal epithelial cells on candida albicans. Entrance Immunol. 2022;13:777613.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toenjes KA, Stark BC, Brooks KM, Johnson DI. Inhibitors of mobile signalling are cytotoxic or block the budded-to-hyphal transition within the pathogenic yeast Candida albicans. J Med Microbiol. 2009;58:779–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okamoto-Shibayama Ok, Sato Y, Azuma T. Resveratrol impaired the morphological transition of Candida albicans beneath varied hyphae-inducing circumstances. J Microbiol Biotechnol. 2010;20:942–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajasekar V, Darne P, Prabhune A, Kao RY, Solomon AP, Ramage G, Samaranayake L, Neelakantan P. A curcumin-sophorolipid nanocomplex inhibits Candida albicans filamentation and biofilm improvement. Colloids Surf B. 2021;200:111617.

    Article 
    CAS 

    Google Scholar
     

  • Zhang M, Chang W, Shi H, Zhou Y, Zheng S, Li Y, Li L, Lou H. Biatriosporin D shows anti-virulence exercise via lowering the intracellular cAMP ranges. Toxicol Appl Pharmcol. 2017;322:104–12.

    Article 
    CAS 

    Google Scholar
     

  • Haque F, Alfatah M, Ganesan Ok, Bhattacharyya MS. Inhibitory impact of sophorolipid on Candida albicans biofilm formation and hyphal progress. Sci Rep. 2016;6:23575.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nithyanand P, Shafreen RMB, Muthamil S, Pandian SK. Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiol Res. 2015;179:20–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • do Nascimento Dias J, de Souza Silva C, de Araújo AR, Souza JMT, de Holanda Veloso Junior PH, Cabral WF, et al. Mechanisms of motion of antimicrobial peptides ToAP2 and NDBP-5.7 in opposition to Candida albicans planktonic and biofilm cells. Sci Rep. 2020;10:10327.

  • Kim Y-G, Lee J-H, Park JG, Lee J. Inhibition of Candida albicans and Staphylococcus aureus biofilms by centipede oil and linoleic acid. Biofouling. 2020;36:126–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iadnut A, Mamoon Ok, Thammasit P, Pawichai S, Tima S, Preechasuth Ok, et al. In vitro antifungal and antivirulence actions of biologically synthesized ethanolic extract of propolis-loaded PLGA nanoparticles in opposition to Candida albicans. Evid Primarily based Complementary Altern Med. 2019;2019:3715481.

  • Jalal M, Ansari MA, Ali SG, Khan HM, Rehman S. Anticandidal exercise of bioinspired ZnO NPs: impact on progress, cell morphology and key virulence attributes of Candida species. Artif Cells Nanomed Biotechnol. 2018;46:912–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jalal M, Ansari MA, Alzohairy MA, Ali SG, Khan HM, Almatroudi A, Siddiqui MI. Anticandidal exercise of biosynthesized silver nanoparticles: impact on progress, cell morphology, and key virulence attributes of Candida species. Int J Nanomed. 2019;14:4667–79.

    Article 
    CAS 

    Google Scholar
     

  • Sudbery PE. Progress of Candida albicans hyphae. Nat Rev Microbiol. 2011;9:737–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han T-L, Cannon RD, Villas-Bôas SG. The metabolic foundation of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol. 2011;48:747–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding X, Kambara H, Guo R, Kanneganti A, Acosta-Zaldívar M, Li J, Liu F, Bei T, Qi W, Xie X. Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages. Nat Commun. 2021;12:6699.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puri S, Kumar R, Rojas IG, Salvatori O, Edgerton M. Iron chelator deferasirox reduces Candida albicans invasion of oral epithelial cells and an infection ranges in murine oropharyngeal candidiasis. Antimicrob Brokers Chemother. 2019;63:e02152–02118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar W, Zhang L, Lu X, Feng L, Solar S. The synergistic antifungal results of sodium phenylbutyrate mixed with azoles in opposition to Candida albicans by way of the regulation of the Ras–cAMP–PKA signalling pathway and virulence. Can J Microbiol. 2019;65:105–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao C, Wu M, Bing J, Tao L, Ding X, Liu X, Huang G. International regulatory roles of the c AMP/PKA pathway revealed by phenotypic, transcriptomic and phosphoproteomic analyses in a null mutant of the PKA catalytic subunit in C andida albicans. Mol Microbiol. 2017;105:46–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *