Frontier function of extracellular vesicles in kidney illness | Journal of Nanobiotechnology

  • Luyckx VA, Tonelli M, Stanifer JW. The worldwide burden of kidney illness and the Sustainable Improvement Objectives. Bull World Well being Organ. 2018;96(6):414–22. https://doi.org/10.2471/BLT.17.206441. D.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borg R, Carlson N, Søndergaard J, Persson F. The rising problem of power kidney illness: an summary of present data. Int J Nephrol. 2023;2023(9609266). https://doi.org/10.1155/2023/9609266.

  • Xie Y, Bowe B, Mokdad AH, Xian H, Yan Y, Li T, Maddukuri G, Tsai C-Y, Floyd T, Al-Aly Z. Evaluation of the worldwide burden of Illness Examine highlights the World, Regional, and Nationwide developments of power kidney Illness Epidemiology from 1990 to 2016. Kidney Int. 2018;94(3):567–81. https://doi.org/10.1016/j.kint.2018.04.011.

    Article 
    PubMed 

    Google Scholar
     

  • GBD Power Kidney Illness Collaboration. World, Regional, and Nationwide Burden of power kidney Illness, 1990–2017: a scientific evaluation for the worldwide burden of Illness Examine 2017. Lancet. 2020;395(10225):709–33. https://doi.org/10.1016/S0140-6736(20)30045-3.

    Article 

    Google Scholar
     

  • Kalantar-Zadeh Ok, Jafar TH, Nitsch D, Neuen BL, Perkovic V. Power kidney illness. Lancet. 2021;398(10302):786–802. https://doi.org/10.1016/S0140-6736(21)00519-5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fayad AI, Buamscha DG, Ciapponi A. Timing of kidney substitute remedy initiation for acute kidney Damage. Cochrane Database Syst Rev. 2022;11(11):CD010612. https://doi.org/10.1002/14651858.CD010612.pub3.

    Article 
    PubMed 

    Google Scholar
     

  • Vijayan A, Abdel-Rahman EM, Liu KD, Goldstein SL, Agarwal A, Okusa MD, Cerda J. AKI!NOW Steering Committee. Restoration after important sickness and acute kidney Damage. Clin J Am Soc Nephrol. 2021;16(10):1601–9. https://doi.org/10.2215/CJN.19601220.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang T-T, Wang B, Lv L-L, Liu B-C. Extracellular vesicle-based nanotherapeutics: rising frontiers in anti-inflammatory remedy. Theranostics. 2020;10(18):8111–29. https://doi.org/10.7150/thno.47865.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • R Ok, Vs L, The Biology F, Biomedical Purposes of Exosomes. Sci (New York N Y). 2020;367(6478). https://doi.org/10.1126/science.aau6977.

  • S G, X S, J W, Al N, Sc A, L M, A Z, M A, Ar I. Applied sciences and standardization in Analysis on Extracellular vesicles. Traits Biotechnol. 2020;38(10). https://doi.org/10.1016/j.tibtech.2020.05.012.

  • Chen C, Solar M, Wang J, Su L, Lin J, Yan X. Energetic Cargo Loading into Extracellular vesicles: highlights the heterogeneous encapsulation Behaviour. J Extracell Vesicles. 2021;10(13):e12163. https://doi.org/10.1002/jev2.12163.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrmann IK, Wooden MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug supply platform. Nat Nanotechnol. 2021;16(7):748–59. https://doi.org/10.1038/s41565-021-00931-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Chen D, Ho EA. Challenges within the Improvement and Institution of Exosome-based drug Supply techniques. J Management Launch. 2021;329:894–906. https://doi.org/10.1016/j.jconrel.2020.10.020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jing H, Tang S, Lin S, Liao M, Chen H, Zhou J. The function of Extracellular vesicles in Renal Fibrosis. Cell Dying Dis. 2019;10(5):367. https://doi.org/10.1038/s41419-019-1605-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grange C, Bussolati B. Extracellular vesicles in kidney illness. Nat Rev Nephrol. 2022;18(8):499–513. https://doi.org/10.1038/s41581-022-00586-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra A-B, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as instruments and targets in Remedy for illnesses. Sign Transduct Goal Ther. 2024;9(1):27. https://doi.org/10.1038/s41392-024-01735-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruno S, Porta S, Bussolati B. Extracellular vesicles in renal tissue injury and regeneration. Eur J Pharmacol. 2016;790:83–91. https://doi.org/10.1016/j.ejphar.2016.06.058.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang J, Wang X, Wang Z, Deng L, Wang Y, Tang Y, Luo L, Leung E. L.-H. Extracellular vesicles as a Novel Mediator of Interkingdom Communication. Cytokine Development Issue Rev. 2023;73:173–84. https://doi.org/10.1016/j.cytogfr.2023.08.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu J, Huang J, Solar Y, Xu W, Qian H. Rising function of Extracellular vesicles in Diabetic Retinopathy. Theranostics. 2024;14(4):1631–46. https://doi.org/10.7150/thno.92463.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin C, Wu P, Li L, Xu W, Qian H. Exosomes: rising remedy supply instruments and biomarkers for kidney illnesses. Stem Cells Int. 2021;2021(7844455). https://doi.org/10.1155/2021/7844455.

  • Hade MD, Suire CN, Mossell J, Suo Z. Extracellular vesicles: rising frontiers in Wound Therapeutic. Med Res Rev. 2022;42(6):2102–25. https://doi.org/10.1002/med.21918.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuji Ok, Kitamura S, Wada J. Immunomodulatory and Regenerative results of Mesenchymal Stem Cell-Derived Extracellular vesicles in Renal illnesses. Int J Mol Sci. 2020;21(3):756. https://doi.org/10.3390/ijms21030756.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato Y, Takahashi M, Yanagita M. Pathophysiology of AKI to CKD development. Semin Nephrol. 2020;40(2):206–15. https://doi.org/10.1016/j.semnephrol.2020.01.011.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batte A, Shahrin L, Claure-Del Granado R, Luyckx VA, Conroy AL. Infections and acute kidney Damage: A World Perspective. Semin Nephrol. 2023;43(5):151466. https://doi.org/10.1016/j.semnephrol.2023.151466.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poston JT, Koyner JL. Sepsis Related Acute Kidney Damage. BMJ 2019, 364, k4891. https://doi.org/10.1136/bmj.k4891

  • Pefanis A, Bongoni AK, McRae JL, Salvaris EJ, Fisicaro N, Murphy JM, Ierino FL, Cowan PJ. Dynamics of Necroptosis in kidney ischemia-reperfusion Damage. Entrance Immunol. 2023;14:1251452. https://doi.org/10.3389/fimmu.2023.1251452.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perazella MA, Rosner MH. Drug-Induced Acute kidney Damage. Clin J Am Soc Nephrol. 2022;17(8):1220–33. https://doi.org/10.2215/CJN.11290821.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Zhang C, From. AKI to CKD: maladaptive restore and the underlying mechanisms. Int J Mol Sci. 2022;23(18):10880. https://doi.org/10.3390/ijms231810880.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A, Rodrigues-Diez RR. Concentrating on the development of power kidney illness. Nat Rev Nephrol. 2020;16(5):269–88. https://doi.org/10.1038/s41581-019-0248-y.

    Article 
    PubMed 

    Google Scholar
     

  • Acute Kidney Damage. Nat Rev Dis Primers. 2021;7(1):51. https://doi.org/10.1038/s41572-021-00291-0.

    Article 

    Google Scholar
     

  • R H, P F, L MK, Fibrosis. From mechanisms to Therapeutic Medicines. Sign Transduct Goal Remedy. 2023;8(1). https://doi.org/10.1038/s41392-023-01379-7.

  • Guo R, Duan J, Pan S, Cheng F, Qiao Y, Feng Q, Liu D, Liu Z. The Street from AKI to CKD: Molecular mechanisms and therapeutic targets of Ferroptosis. Cell Dying Dis. 2023;14(7):426. https://doi.org/10.1038/s41419-023-05969-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ls C, Pl Ok. Acute kidney Damage and power kidney illness: an Built-in Scientific Syndrome. Kidney Int. 2012;82(5). https://doi.org/10.1038/ki.2012.208.

  • Li X-Q, Lerman LO, Meng Y. Potential function of Extracellular vesicles within the pathophysiology of glomerular illnesses. Clin Sci (Lond). 2020;134(20):2741–54. https://doi.org/10.1042/CS20200766.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Z, Shi L, Chen B, Qian H. Regulation of regulated cell demise by Extracellular vesicles in Acute kidney Damage and power kidney illness. Cytokine Development Issue Rev. 2024;76:99–111. https://doi.org/10.1016/j.cytogfr.2023.12.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi L, Zeng H, An Z, Chen W, Shan Y, Ji C, Qian H. Extracellular vesicles: Illuminating Renal pathophysiology and therapeutic frontiers. Eur J Pharmacol. 2024;978:176720. https://doi.org/10.1016/j.ejphar.2024.176720.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thongboonkerd V, Kanlaya R. The divergent roles of exosomes in kidney illnesses: Pathogenesis, Diagnostics, Prognostics and therapeutics. Int J Biochem Cell Biol. 2022;149:106262. https://doi.org/10.1016/j.biocel.2022.106262.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karpman D, Tontanahal A. Extracellular vesicles in renal inflammatory and infectious illnesses. Free Radic Biol Med. 2021;171:42–54. https://doi.org/10.1016/j.freeradbiomed.2021.04.032.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ginini L, Billan S, Fridman E, Gil Z. Perception into Extracellular vesicle-cell communication: from cell recognition to intracellular destiny. Cells. 2022;11(9):1375. https://doi.org/10.3390/cells11091375.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin S, Zhou Z, Fu P, Jin C, Wu P, Ji C, Shan Y, Shi L, Xu M, Qian H. Roles of Extracellular vesicles in ageing-related power kidney illness: Demon or Angel. Pharmacol Res. 2023;193:106795. https://doi.org/10.1016/j.phrs.2023.106795.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu Y, Xiang Y, Li H, Chen A, Dong Z. Irritation in kidney restore: mechanism and therapeutic potential. Pharmacol Ther. 2022;237:108240. https://doi.org/10.1016/j.pharmthera.2022.108240.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan L, Yang J, Liu F, Li L, Liu J, Chen Y, Cheng J, Lu Y, Yuan Y. Macrophage-derived exosomal miR-195a-5p impairs tubular epithelial cells Mitochondria in Acute kidney Damage mice. FASEB J. 2023;37(1):e22691. https://doi.org/10.1096/fj.202200644R.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang W, Xu C, Xu S, Su W, Du C, Dong J, Feng R, Huang C, Li J, Ma T, Macrophage-Derived. LRG1-Enriched extracellular vesicles exacerbate aristolochic acid nephropathy in a TGFβR1-Dependent method. Cell Biol Toxicol. 2022;38(4):629–48. https://doi.org/10.1007/s10565-021-09666-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, Chen J, Zhu W, Qi X-M, Wu Y-G. Exosomal mir-7002-5p derived from Highglucose-Induced macrophages suppresses autophagy in tubular epithelial cells by concentrating on Atg9b. FASEB J. 2022;36(9):e22501. https://doi.org/10.1096/fj.202200550RR.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Jia Y, Xue M, Hu F, Zheng Z, Zhang S, Ren S, Yang Y, Si Z, Wang L, Guan M, Xue Y. Inhibiting Rab27a in renal tubular epithelial cells attenuates the irritation of Diabetic kidney illness by means of the miR-26a-5p/CHAC1/NF-kB pathway. Life Sci. 2020;261:118347. https://doi.org/10.1016/j.lfs.2020.118347.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv L-L, Feng Y, Wu M, Wang B, Li Z-L, Zhong X, Wu W-J, Chen J, Ni H-F, Tang T-T, Tang R-N, Lan H-Y, Liu B-C. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 Macrophage activation in kidney Damage. Cell Dying Differ. 2020;27(1):210–26. https://doi.org/10.1038/s41418-019-0349-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding C, Zheng J, Wang B, Li Y, Xiang H, Dou M, Qiao Y, Tian P, Ding X, Xue W. Exosomal MicroRNA-374b-5p from tubular epithelial cells promoted M1 macrophages activation and worsened renal Ischemia/Reperfusion Damage. Entrance Cell Dev Biol. 2020;8:587693. https://doi.org/10.3389/fcell.2020.587693.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Chen H, Zhou L, Li C, Lu G, Wang L. Macrophage–derived Exosomal miRNA–155 promotes tubular Damage in ischemia–induced acute kidney Damage. Int J Mol Med. 2022;50(3):116. https://doi.org/10.3892/ijmm.2022.5172.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia Y, Zheng Z, Xue M, Zhang S, Hu F, Li Y, Yang Y, Zou M, Li S, Wang L, Guan M, Xue Y. Extracellular vesicles from Albumin-Induced tubular epithelial cells promote the M1 macrophage phenotype by Concentrating on Klotho. Mol Ther. 2019;27(8):1452–66. https://doi.org/10.1016/j.ymthe.2019.05.019.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hung P-H, Hsu Y-C, Chen T-H, Lin C-L. Current advances in Diabetic kidney illnesses: from kidney Damage to kidney fibrosis. Int J Mol Sci. 2021;22(21):11857. https://doi.org/10.3390/ijms222111857.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv L-L, Feng Y, Wen Y, Wu W-J, Ni H-F, Li Z-L, Zhou L-T, Wang B, Zhang J-D, Crowley SD, Liu B-C. Exosomal CCL2 from tubular epithelial cells is important for Albumin-Induced Tubulointerstitial irritation. J Am Soc Nephrol. 2018;29(3):919–35. https://doi.org/10.1681/ASN.2017050523.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia Y, Chen J, Zheng Z, Tao Y, Zhang S, Zou M, Yang Y, Xue M, Hu F, Li Y, Zhang Q, Xue Y, Zheng Z. Tubular epithelial cell-derived extracellular vesicles induce macrophage glycolysis by stabilizing HIF-1α in Diabetic kidney illness. Mol Med. 2022;28(1):95. https://doi.org/10.1186/s10020-022-00525-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z-L, Lv L-L, Tang T-T, Wang B, Feng Y, Zhou L-T, Cao J-Y, Tang R-N, Wu M, Liu H, Crowley SD, Liu B-C. HIF-1α Inducing Exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in Tubulointerstitial irritation. Kidney Int. 2019;95(2):388–404. https://doi.org/10.1016/j.kint.2018.09.013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Tang T-T, Cao J-Y, Li Z-L, Zhong X, Wen Y, Shen A-R, Liu B-C, Lv L-L. KIM-1 augments Hypoxia-Induced Tubulointerstitial irritation by means of Uptake of Small Extracellular vesicles by tubular epithelial cells. Mol Ther. 2023;31(5):1437–50. https://doi.org/10.1016/j.ymthe.2022.08.013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen PP, Zhang JX, Li XQ, Li L, Wu QY, Liu L, Wang GH, Ruan XZ, Ma KL. Outer membrane vesicles derived from Intestine Microbiota Mediate Tubulointerstitial irritation: a possible new mechanism for Diabetic kidney illness. Theranostics. 2023;13(12):3988–4003. https://doi.org/10.7150/thno.84650.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiaradia E, Tancini B, Emiliani C, Delo F, Pellegrino RM, Tognoloni A, Urbanelli L, Buratta S. Extracellular vesicles below oxidative stress circumstances: Organic properties and physiological roles. Cells. 2021;10(7):1763. https://doi.org/10.3390/cells10071763.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Kim CS, Adams BC, Wilkinson R, Hill MM, Shah AK, Mohamed A, Dutt M, Ng MSY, Ungerer JPJ, Healy HG, Kassianos AJ. Human proximal tubular epithelial cell-derived small Extracellular vesicles mediate synchronized tubular ferroptosis in hypoxic kidney Damage. Redox Biol. 2024;70:103042. https://doi.org/10.1016/j.redox.2024.103042.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu X, Jiang G, Gao Y, Chen Q, Solar S, Mao W, Zhang N, Zhu Z, Wang D, Zhang G, Chen M, Zhang L, Chen S. Platelet-derived extracellular vesicles irritate septic acute kidney Damage by way of delivering ARF6. Int J Biol Sci. 2023;19(16):5055–73. https://doi.org/10.7150/ijbs.87165.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X, Lai Y, Hua Z-C. Apoptosis and apoptotic physique: Illness Message and Therapeutic Goal potentials. Biosci Rep. 2019;39(1):BSR20180992. https://doi.org/10.1042/BSR20180992.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Q, Zhang Y, Wang X, Wang F, Zhao H. Isorhapontigenin modulates SOX9/TOLLIP expression to Attenuate Cell apoptosis and oxidative stress in Paraquat-Induced Acute kidney Damage. Oxid Med Cell Longev. 2022;2022(3328623). https://doi.org/10.1155/2022/3328623.

  • Stoian M, Dumitrache AM, Cîrciu F, Stănică R, Stoica V. Apoptosis in Acute kidney Damage. Intern Med. 2020;17(1):45–53. https://doi.org/10.2478/inmed-2020-0101.

    Article 

    Google Scholar
     

  • Jiang W-J, Xu C-T, Du C-L, Dong J-H, Xu S-B, Hu B-F, Feng R, Zang D-D, Meng X-M, Huang C, Li J, Ma T-T. Tubular epithelial cell-to-macrophage communication types a adverse suggestions Loop by way of Extracellular Vesicle switch to advertise renal irritation and apoptosis in Diabetic Nephropathy. Theranostics. 2022;12(1):324–39. https://doi.org/10.7150/thno.63735.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X-Q, Tian X-Y, Wang Z-W, Wu X, Wang J-P, Yan T-Z. miR-191 secreted by platelet-derived microvesicles Induced apoptosis of renal tubular epithelial cells and took part in renal ischemia-reperfusion Damage by way of inhibiting CBS. Cell Cycle. 2019;18(2):119–29. https://doi.org/10.1080/15384101.2018.1542900.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Li R, Zhang L, Chen Y, Dong W, Zhao X, Yang H, Zhang S, Xie Z, Ye Z, Wang W, Li C, Li Z, Liu S, Dong Z, Yu X, Liang X. Extracellular vesicles from excessive glucose-treated podocytes induce apoptosis of Proximal Tubular Epithelial cells. Entrance Physiol. 2020;11:579296. https://doi.org/10.3389/fphys.2020.579296.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon JS, Kim E, Bae Y-U, Yang WM, Lee H, Kim H, Noh H, Han DC, Ryu S, Kwon SH. microRNA in Extracellular vesicles launched by Broken Podocytes promote apoptosis of renal tubular epithelial cells. Cells. 2020;9(6):1409. https://doi.org/10.3390/cells9061409.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai Y-C, Kuo M-C, Hung W-W, Wu L-Y, Wu P-H, Chang W-A, Kuo P-L, Hsu Y-L. Excessive glucose induces Mesangial Cell apoptosis by means of miR-15b-5p and promotes Diabetic Nephropathy by Extracellular Vesicle Supply. Mol Ther. 2020;28(3):963–74. https://doi.org/10.1016/j.ymthe.2020.01.014.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humphreys BD. Mechanisms of Renal Fibrosis. Annu Rev Physiol. 2018;80:309–26. https://doi.org/10.1146/annurev-physiol-022516-034227.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Djudjaj S, Boor P. Mobile and Molecular mechanisms of kidney fibrosis. Mol Points Med. 2019;65:16–36. https://doi.org/10.1016/j.mam.2018.06.002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan Q, Tang B, Zhang C. Signaling pathways of power kidney illnesses, implications for therapeutics. Sign Transduct Goal Ther. 2022;7:182. https://doi.org/10.1038/s41392-022-01036-5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Miao J, Wang C, Zhou S, Chen S, Ren Q, Hong X, Wang Y, Hou FF, Zhou L, Liu Y. Tubule-derived exosomes play a Central Position in Fibroblast activation and kidney fibrosis. Kidney Int. 2020;97(6):1181–95. https://doi.org/10.1016/j.kint.2019.11.026.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan H, Peng R, Mao L, Fang F, Xu B, Chen M. Injured tubular epithelial cells activate fibroblasts to advertise kidney fibrosis by means of mir-150-Containing exosomes. Exp Cell Res. 2020;392(2):112007. https://doi.org/10.1016/j.yexcr.2020.112007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu R, Li X, Peng C, Gao R, Ma L, Hu J, Luo T, Qing H, Wang Y, Ge Q, Wang Z, Wu C, Xiao X, Yang J, Younger MJ, Li Q, Yang S. miR-196b-5p-Enriched extracellular vesicles from tubular epithelial cells mediated Aldosterone-Induced Renal Fibrosis in mice with diabetes. BMJ Open Diab Res Care. 2020;8(1):e001101. https://doi.org/10.1136/bmjdrc-2019-001101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao S, Li W, Yu W, Rao T, Li H, Ruan Y, Yuan R, Li C, Ning J, Li S, Chen W, Cheng F, Zhou X. Exosomal miR-21 from tubular cells contributes to Renal Fibrosis by activating fibroblasts by way of Concentrating on PTEN in obstructed kidneys. Theranostics. 2021;11(18):8660–73. https://doi.org/10.7150/thno.62820.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu N-Y, Zhang Z-H, Zhang X-X, Xie W-W, Niu X-Q. Microvesicles containing microRNA-216a secreted by tubular epithelial cells take part in renal interstitial fibrosis by means of activating PTEN/AKT pathway. Eur Rev Med Pharmacol Sci. 2019;23(15):6629–36. https://doi.org/10.26355/eurrev_201908_18552.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang X-F, Yang Y, Zhang J, Cao W, Microvesicle-Containing. miRNA-153-3p induces the apoptosis of Proximal Tubular Epithelial cells and participates in renal interstitial fibrosis. Eur Rev Med Pharmacol Sci. 2019;23(22):10065–71. https://doi.org/10.26355/eurrev_201911_19574.

    Article 
    PubMed 

    Google Scholar
     

  • Zheng S, Zeng Y, Chu L, Gong T, Li S, Yang M. Renal tissue-derived exosomal miRNA-34a in Diabetic Nephropathy induces renal tubular cell fibrosis by selling the polarization of M1 macrophages. IET Nanobiotechnol. 2024;2024(5702517). https://doi.org/10.1049/2024/5702517.

  • Liu D, Liu F, Li Z, Pan S, Xie J, Zhao Z, Liu Z, Zhang J, Liu Z. HNRNPA1-Mediated Exosomal sorting of mir-483-5p out of renal tubular epithelial cells promotes the Development of Diabetic Nephropathy-Induced renal interstitial fibrosis. Cell Dying Dis. 2021;12(3):255. https://doi.org/10.1038/s41419-021-03460-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su H, Qiao J, Hu J, Li Y, Lin J, Yu Q, Zhen J, Ma Q, Wang Q, Lv Z, Wang R. Podocyte-derived extracellular vesicles mediate renal proximal tubule cells dedifferentiation by way of microRNA-221 in Diabetic Nephropathy. Mol Cell Endocrinol. 2020;518:111034. https://doi.org/10.1016/j.mce.2020.111034.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munkonda MN, Akbari S, Landry C, Solar S, Xiao F, Turner M, Holterman CE, Nasrallah R, Hébert RL, Kennedy CRJ, Burger D. Podocyte-derived microparticles promote proximal tubule Fibrotic Signaling by way of P38 MAPK and CD36. J Extracell Vesicles. 2018;7(1):1432206. https://doi.org/10.1080/20013078.2018.1432206.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar IO, Lerman LO. Urinary extracellular vesicles as biomarkers of kidney illness: from Diagnostics to therapeutics. Diagnostics (Basel). 2020;10(5):311. https://doi.org/10.3390/diagnostics10050311.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erdbrügger U, Blijdorp CJ, Bijnsdorp IV, Borràs FE, Burger D, Bussolati B, Byrd JB, Clayton A, Expensive JW, Falcón-Pérez JM, Grange C, Hill AF, Holthöfer H, Hoorn EJ, Jenster G, Jimenez CR, Junker Ok, Klein J, Knepper MA, Koritzinsky EH, Luther JM, Lenassi M, Leivo J, Mertens I, Musante L, Oeyen E, Puhka M, van Royen ME, Sánchez C, Soekmadji C, Thongboonkerd V, van Steijn V, Verhaegh G, Webber JP, Witwer Ok, Yuen PST, Zheng L, Llorente A, Martens-Uzunova ES. Urinary extracellular vesicles: a place paper by the Urine Process Drive of the Worldwide Society for Extracellular Vesicles. J Extracell Vesicles. 2021;10(7):e12093. https://doi.org/10.1002/jev2.12093.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erdbrügger U, Hoorn EJ, Le TH, Blijdorp CJ, Burger D. Extracellular vesicles in kidney illnesses: transferring Ahead. Kidney360. 2023;4(2):245–57. https://doi.org/10.34067/KID.0001892022.

    Article 
    PubMed 

    Google Scholar
     

  • Sonoda H, Yokota-Ikeda N, Oshikawa S, Kanno Y, Yoshinaga Ok, Uchida Ok, Ueda Y, Kimiya Ok, Uezono S, Ueda A, Ito Ok, Ikeda M. Decreased abundance of urinary exosomal Aquaporin-1 in Renal Ischemia-Reperfusion Damage. Am J Physiol Ren Physiol. 2009;297(4):F1006–1016. https://doi.org/10.1152/ajprenal.00200.2009.

    Article 
    CAS 

    Google Scholar
     

  • Zhou H, Pisitkun T, Aponte A, Yuen PST, Hoffert JD, Yasuda H, Hu X, Chawla L, Shen R-F, Knepper MA, Star RA. Exosomal Fetuin-A recognized by proteomics: a novel urinary biomarker for detecting Acute kidney Damage. Kidney Int. 2006;70(10):1847–57. https://doi.org/10.1038/sj.ki.5001874.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Y Y, Z R, A X, Y J, Y X, P W, D J, X W. Evaluation of urinary exosomal NHE3 as a biomarker of Acute kidney Damage. Diagnostics (Basel Switzerland). 2022;12(11). https://doi.org/10.3390/diagnostics12112634.

  • Panich T, Chancharoenthana W, Somparn P, Issara-Amphorn J, Hirankarn N, Leelahavanichkul A. Urinary exosomal activating Transcriptional issue 3 because the early diagnostic biomarker for Sepsis-Induced Acute kidney Damage. BMC Nephrol. 2017;18:10. https://doi.org/10.1186/s12882-016-0415-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu D, Chen Y, Masucci M, Xiong C, Zou H, Holthofer H. Potential urine biomarkers for the analysis of Prediabetes and Early Diabetic Nephropathy based mostly on ISN CKHDP Program. Clin Nephrol. 2020;93(1):129–33. https://doi.org/10.5414/CNP92S123.

    Article 
    PubMed 

    Google Scholar
     

  • Ning J, Xiang Z, Xiong C, Zhou Q, Wang X, Zou H. Alpha1-Antitrypsin in urinary extracellular vesicles: a possible biomarker of Diabetic kidney Illness Previous to Microalbuminuria. Diabetes Metab Syndr Obes. 2020;13:2037–48. https://doi.org/10.2147/DMSO.S250347.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ugarte F, Santapau D, Gallardo V, Garfias C, Yizmeyián A, Villanueva S, Sepúlveda C, Rocco J, Pasten C, Urquidi C, Cavada G, San Martin P, Cano F, Irarrázabal CE. Urinary extracellular vesicles as a supply of NGAL for Diabetic kidney illness analysis in youngsters and adolescents with sort 1 diabetes Mellitus. Entrance Endocrinol (Lausanne). 2021;12:654269. https://doi.org/10.3389/fendo.2021.654269.

    Article 
    PubMed 

    Google Scholar
     

  • Li T, Liu TC, Liu N, Li MJ, Zhang M. Urinary exosome proteins PAK6 and EGFR as noninvasive diagnostic biomarkers of Diabetic Nephropathy. BMC Nephrol. 2023;24(1):291. https://doi.org/10.1186/s12882-023-03343-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakurai A, Ono H, Ochi A, Matsuura M, Yoshimoto S, Kishi S, Murakami T, Tominaga T, Nagai Ok, Abe H, Doi T. Involvement of Elf3 on Smad3 activation-dependent accidents in Podocytes and excretion of urinary exosome in Diabetic Nephropathy. PLoS ONE. 2019;14(5):e0216788. https://doi.org/10.1371/journal.pone.0216788.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalani A, Mohan A, Godbole MM, Bhatia E, Gupta A, Sharma RK, Tiwari S. Wilm’s Tumor-1 protein ranges in urinary exosomes from Diabetic sufferers with or with out Proteinuria. PLoS ONE. 2013;8(3):e60177. https://doi.org/10.1371/journal.pone.0060177.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimuccio V, Ranghino A, Praticò Barbato L, Fop F, Biancone L, Camussi G, Bussolati B. Urinary CD133 + extracellular vesicles are decreased in kidney transplanted sufferers with gradual graft perform and vascular injury. PLoS ONE. 2014;9(8):e104490. https://doi.org/10.1371/journal.pone.0104490.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moon P-G, Lee J-E, You S, Kim T-Ok, Cho J-H, Kim I-S, Kwon T-H, Kim C-D, Park S-H, Hwang D, Kim Y-L, Baek M-C. Proteomic evaluation of urinary exosomes from sufferers of early IgA nephropathy and skinny basement membrane nephropathy. Proteomics. 2011;11(12):2459–75. https://doi.org/10.1002/pmic.201000443.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu J, Hu ZB, Chen PP, Lu CC, Zhang JX, Li XQ, Yuan BY, Huang SJ, Ma KL. Urinary podocyte microparticles are Related to Illness Exercise and Renal Damage in systemic Lupus Erythematosus. BMC Nephrol. 2019;20(1):303. https://doi.org/10.1186/s12882-019-1482-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon SH, Woollard JR, Saad A, Garovic VD, Zand L, Jordan KL, Textor SC, Lerman LO. Elevated urinary podocyte-derived extracellular microvesicles in Renovascular Hypertensive sufferers. Nephrol Dial Transpl. 2017;32(5):800–7. https://doi.org/10.1093/ndt/gfw077.

    Article 
    CAS 

    Google Scholar
     

  • Solar IO, Santelli A, Abumoawad A, Eirin A, Ferguson CM, Woollard JR, Lerman A, Textor SC, Puranik AS, Lerman LO. Lack of Renal Peritubular Capillaries in Hypertensive Sufferers Is Detectable by Urinary Endothelial Microparticle Ranges. Hypertension 2018, 72 (5), 1180–1188. https://doi.org/10.1161/HYPERTENSIONAHA.118.11766

  • Hashemi E, Dehghanbanadaki H, Baharanchi AA, Forouzanfar Ok, Kakaei A, Mohammadi SM, Zeidi S, Razi F. WT1 and ACE mRNAs of blood extracellular vesicle as biomarkers of Diabetic Nephropathy. J Transl Med. 2021;19(1):299. https://doi.org/10.1186/s12967-021-02964-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Y, Shen A, Guo F, Tune Y, Jing N, Ding X, Pan M, Zhang H, Wang J, Wu L, Ma X, Feng L, Qin G. Urinary exosomal MiRNA-4534 as a Novel Diagnostic Biomarker for Diabetic kidney illness. Entrance Endocrinol (Lausanne). 2020;11:590. https://doi.org/10.3389/fendo.2020.00590.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dimuccio V, Bellucci L, Genta M, Grange C, Brizzi MF, Gili M, Gallo S, Centomo ML, Collino F, Bussolati B. Upregulation of miR145 and miR126 in EVs from renal cells present process EMT and urine of Diabetic Nephropathy sufferers. Int J Mol Sci. 2022;23(20):12098. https://doi.org/10.3390/ijms232012098.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prabu P, Rome S, Sathishkumar C, Gastebois C, Meugnier E, Mohan V, Balasubramanyam M. MicroRNAs from urinary extracellular vesicles are non-invasive early biomarkers of Diabetic Nephropathy in sort 2 diabetes sufferers with the Asian Indian phenotype. Diabetes Metab. 2019;45(3):276–85. https://doi.org/10.1016/j.diabet.2018.08.004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zang J, Maxwell AP, Simpson DA, McKay GJ. Differential expression of urinary exosomal MicroRNAs mir-21-5p and miR-30b-5p in people with Diabetic kidney illness. Sci Rep. 2019;9(1):10900. https://doi.org/10.1038/s41598-019-47504-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Tao Y, Zhao F, Liu T, Shen X, Zhou L. Expression of urinary exosomal miRNA-615-3p and miRNA-3147 in Diabetic Kidney Illness and Their Affiliation with irritation and fibrosis. Ren Fail. 2023;45(1):2121929. https://doi.org/10.1080/0886022X.2022.2121929.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng Y, Lv L-L, Wu W-J, Li Z-L, Chen J, Ni H-F, Zhou L-T, Tang T-T, Wang F-M, Wang B, Chen P-S, Crowley SD, Liu B-C. Urinary exosomes and Exosomal CCL2 mRNA as biomarkers of lively histologic Damage in IgA Nephropathy. Am J Pathol. 2018;188(11):2542–52. https://doi.org/10.1016/j.ajpath.2018.07.017.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Y, Bai F, Qin N, Liu W, Solar Q, Zhou Y, Yang J. Non-proximal renal tubule-derived urinary exosomal miR-200b as a biomarker of Renal Fibrosis. Nephron. 2018;139(3):269–82. https://doi.org/10.1159/000487104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Min Q-H, Chen X-M, Zou Y-Q, Zhang J, Li J, Wang Y, Li S-Q, Gao Q-F, Solar F, Liu J, Xu Y-M, Lin J, Huang L-F, Huang B, Wang X-Z. Differential expression of urinary exosomal microRNAs in IgA Nephropathy. J Clin Lab Anal. 2018;32(2):e22226. https://doi.org/10.1002/jcla.22226.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao S, Solar Y, Mao Q, Zhou C, Chen Y, Xue D. Exosomal miR-4639 and miR-210 in plasma and urine as biomarkers in IgA Nephropathy. Nephron. 2022;146(6):539–52. https://doi.org/10.1159/000523924.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Vives E, Solé C, Moliné T, Vidal M, Agraz I, Ordi-Ros J, Cortés-Hernández J. The urinary exosomal miRNA expression Profile is predictive of scientific response in Lupus Nephritis. Int J Mol Sci. 2020;21(4):1372. https://doi.org/10.3390/ijms21041372.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solé C, Cortés-Hernández J, Felip ML, Vidal M, Ordi-Ros J. miR-29c in urinary exosomes as Predictor of early renal fibrosis in Lupus Nephritis. Nephrol Dial Transpl. 2015;30(9):1488–96. https://doi.org/10.1093/ndt/gfv128.

    Article 
    CAS 

    Google Scholar
     

  • Solé C, Moliné T, Vidal M, Ordi-Ros J, Cortés-Hernández J. An exosomal urinary miRNA signature for early analysis of Renal Fibrosis in Lupus Nephritis. Cells. 2019;8(8):773. https://doi.org/10.3390/cells8080773.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurahashi R, Kadomatsu T, Baba M, Hara C, Itoh H, Miyata Ok, Endo M, Morinaga J, Terada Ok, Araki Ok, Eto M, Schmidt LS, Kamba T, Linehan WM, Oike Y. MicroRNA-204-5p: a novel candidate urinary biomarker of Xp11.2 translocation renal cell carcinoma. Most cancers Sci. 2019;110(6):1897–908. https://doi.org/10.1111/cas.14026.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang W, Ni M, Su Y, Wang H, Zhu S, Zhao A, Li G. MicroRNAs in serum exosomes as potential biomarkers in Clear-Cell Renal Cell Carcinoma. Eur Urol Focus. 2018;4(3):412–9. https://doi.org/10.1016/j.euf.2016.09.007.

    Article 
    PubMed 

    Google Scholar
     

  • Perez-Hernandez J, Olivares D, Forner MJ, Ortega A, Solaz E, Martinez F, Chaves FJ, Redon J, Cortes R. Urinary exosome miR-146a is a possible marker of Albuminuria in important hypertension. J Transl Med. 2018;16(1):228. https://doi.org/10.1186/s12967-018-1604-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim MH, Lee YH, Search engine optimisation J-W, Moon H, Kim JS, Kim YG, Jeong Ok-H, Moon J-Y, Lee TW, Ihm C-G, Kim C-D, Park JB, Chung BH, Kim Y-H, Lee S-H. Urinary exosomal viral microRNA as a marker of BK Virus Nephropathy in kidney transplant recipients. PLoS ONE. 2017;12(12):e0190068. https://doi.org/10.1371/journal.pone.0190068.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang J, Cao H, Cui B, Ma X, Gao L, Yu C, Shen F, Yang X, Liu N, Qiu A, Cai G, Zhuang S. Mesenchymal stem cells-derived Exosomes Ameliorate Ischemia/Reperfusion Induced Acute kidney Damage in a Porcine Mannequin. Entrance Cell Dev Biol. 2022;10:899869. https://doi.org/10.3389/fcell.2022.899869.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao J-Y, Wang B, Tang T-T, Wen Y, Li Z-L, Feng S-T, Wu M, Liu D, Yin D, Ma Ok-L, Tang R-N, Wu Q-L, Lan H-Y, Lv L-L, Liu B-C. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular restore by suppression of P53 in ischemic acute kidney Damage. Theranostics. 2021;11(11):5248–66. https://doi.org/10.7150/thno.54550.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi W, Zhou X, Li X, Peng X, Chen G, Li Y, Zhang C, Yu H, Feng Z, Gou X, Fan J. Human umbilical twine mesenchymal stem cells shield in opposition to Renal Ischemia-Reperfusion Damage by secreting Extracellular vesicles loaded with miR-148b-3p that focus on pyruvate dehydrogenase kinase 4 to inhibit endoplasmic reticulum stress on the reperfusion levels. Int J Mol Sci. 2023;24(10):8899. https://doi.org/10.3390/ijms24108899.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan Y, Yu Y, Yu C, Luo J, Wen S, Shen L, Wei G, Hua Y. Human umbilical twine mesenchymal stem cell exosomes alleviate Acute kidney Damage by inhibiting pyroptosis in rats and NRK-52E cells. Ren Fail. 2023;45(1):2221138. https://doi.org/10.1080/0886022X.2023.2221138.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ullah M, Liu DD, Rai S, Concepcion W, Thakor AS. HSP70-Mediated NLRP3 inflammasome suppression underlies reversal of Acute kidney Damage following extracellular vesicle and targeted Ultrasound Mixture Remedy. Int J Mol Sci. 2020;21(11):4085. https://doi.org/10.3390/ijms21114085.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Jia H, Zhang B, Yin L, Mao F, Yu J, Ji C, Xu X, Yan Y, Xu W, Qian H. HucMSC Exosome-transported 14-3-3ζ prevents the Damage of Cisplatin to HK-2 cells by inducing Autophagy in Vitro. Cytotherapy. 2018;20(1):29–44. https://doi.org/10.1016/j.jcyt.2017.08.002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Cao S. Pre-incubation with human umbilical twine derived mesenchymal stem cells-exosomes prevents Cisplatin-Induced Renal Tubular Epithelial Cell Damage. Getting old. 2020;12(18):18008–18. https://doi.org/10.18632/growing old.103545.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji C, Zhang J, Zhou Z, Shi H, Liu W, Solar F, Zhang C, Zhang L, Solar Z, Qian H. Platelet-Wealthy plasma promotes MSCs exosomes paracrine to restore acute kidney Damage by way of AKT/Rab27 pathway. Am J Transl Res. 2021;13(3):1445–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang R, Zhu Y, Li Y, Liu W, Yin L, Yin S, Ji C, Hu Y, Wang Q, Zhou X, Chen J, Xu W, Qian H. Human umbilical twine mesenchymal stem cell exosomes Alleviate Sepsis-Related Acute kidney Damage by way of regulating microRNA-146b expression. Biotechnol Lett. 2020;42(4):669–79. https://doi.org/10.1007/s10529-020-02831-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Wang J, Zhang Y, Hu X, Li L, Chen P. Exosomes derived from mesenchymal stem cells ameliorate renal fibrosis by way of supply of miR-186-5p. Hum Cell. 2022;35(1):83–97. https://doi.org/10.1007/s13577-021-00617-w.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji C, Zhang J, Zhu Y, Shi H, Yin S, Solar F, Wang Q, Zhang L, Yan Y, Zhang X, Xu W, Qian H. Exosomes Derived from hucMSC Attenuate Renal Fibrosis by means of CK1δ/β-TRCP-Mediated YAP degradation. Cell Dying Dis. 2020;11(5):327. https://doi.org/10.1038/s41419-020-2510-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu B, Hu D, Zhou Y, Yu Y, Shen L, Lengthy C, Butnaru D, Timashev P, He D, Lin T, Xu T, Zhang D, Wei G. Exosomes launched by human umbilical twine mesenchymal stem cells shield in opposition to renal interstitial fibrosis by means of ROS-Mediated P38MAPK/ERK signaling pathway. Am J Transl Res. 2020;12(9):4998–5014.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Y Y, M C, Q G, L S, X L, J P, Y Z, T X, D Z, G W. Human umbilical twine mesenchymal stem cell exosome-derived mir-874-3p concentrating on RIPK1/PGAM5 attenuates kidney tubular epithelial cell injury. Cell Mol Biol Lett. 2023;28(1). https://doi.org/10.1186/s11658-023-00425-0.

  • He J, Wang Y, Lu X, Zhu B, Pei X, Wu J, Zhao W. Micro-vesicles derived from bone marrow stem cells shield the kidney each in Vivo and in Vitro by microRNA-Dependent repairing. Nephrol (Carlton). 2015;20(9):591–600. https://doi.org/10.1111/nep.12490.

    Article 
    CAS 

    Google Scholar
     

  • Wang C, Zhu G, He W, Yin H, Lin F, Gou X, Li X. BMSCs shield in opposition to Renal Ischemia-Reperfusion Damage by secreting Exosomes loaded with miR-199a-5p that Goal BIP to inhibit endoplasmic reticulum stress on the very early reperfusion levels. FASEB J. 2019;33(4):5440–56. https://doi.org/10.1096/fj.201801821R.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu G, Pei L, Lin F, Yin H, Li X, He W, Liu N, Gou X. Exosomes from human-bone-marrow-derived mesenchymal stem cells shield in opposition to Renal Ischemia/Reperfusion Damage by way of transferring miR-199a-3p. J Cell Physiol. 2019;234(12):23736–49. https://doi.org/10.1002/jcp.28941.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li D, Qu J, Yuan X, Zhuang S, Wu H, Chen R, Wu J, Zhang M, Ying L. Mesenchymal stem cells alleviate renal fibrosis and inhibit Autophagy by way of Exosome switch of miRNA-122a. Stem Cells Int. 2022;2022(1981798). https://doi.org/10.1155/2022/1981798.

  • Wang S-J, Qiu Z-Z, Chen F-W, Mao A-L, Bai J-C, Hong Y-J, Zhang Z-P, Zhu W-A, Zhang Z-W, Zhou H. Bone marrow mesenchymal stem cell-derived extracellular vesicles containing miR-181d shield rats in opposition to Renal Fibrosis by inhibiting KLF6 and the NF-κB signaling pathway. Cell Dying Dis. 2022;13(6):535. https://doi.org/10.1038/s41419-022-04875-w.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu S, Cheuk YC, Jia Y, Chen T, Chen J, Luo Y, Cao Y, Guo J, Dong L, Zhang Y, Shi Y, Rong R. Bone marrow mesenchymal stem cell-derived exosomal miR-21a-5p alleviates renal fibrosis by attenuating glycolysis by Concentrating on PFKM. Cell Dying Dis. 2022;13(10):876. https://doi.org/10.1038/s41419-022-05305-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan F, Yang R-C, Tang Y-W, Tang X-L, Ye T, Zheng J, Zhang H-Q, Lin Y. BMSC-Derived exosomes shield in opposition to Kidney Damage by means of regulating Klotho in 5/6 nephrectomy rats. Eur J Med Res. 2022;27(1):118. https://doi.org/10.1186/s40001-022-00742-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Guo W, Guo Y, Chen X, Liu W. Bone marrow mesenchymal stem cell-derived exosomes enhance renal fibrosis by way of regulating smurf 2/Smad 7. Entrance Biosci (Landmark Ed). 2022;27(1):17. https://doi.org/10.31083/j.fbl2701017.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eirin A, Zhu X-Y, Puranik AS, Tang H, McGurren KA, van Wijnen AJ, Lerman A, Lerman LO. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney irritation. Kidney Int. 2017;92(1):114–24. https://doi.org/10.1016/j.kint.2016.12.023.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan Y, Luo Q, Wang Y, Ma Y, Chen F, Zhu X, Shi J. Adipose mesenchymal stem cell-derived extracellular vesicles containing microRNA-26a-5p goal TLR4 and shield in opposition to Diabetic Nephropathy. J Biol Chem. 2020;295(37):12868–84. https://doi.org/10.1074/jbc.RA120.012522.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Hu C, Zhang B, Li M, Deng F, Zhao S. Exosomal microRNA-342-5p secreted from adipose-derived mesenchymal stem cells mitigates acute kidney Damage in Sepsis mice by inhibiting TLR9. Biol Proced On-line. 2023;25(1):10. https://doi.org/10.1186/s12575-023-00198-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao F, Zuo B, Wang Y, Li S, Yang J, Solar D. Protecting perform of Exosomes from Adipose tissue-derived mesenchymal stem cells in Acute kidney Damage by means of SIRT1 Pathway. Life Sci. 2020;255:117719. https://doi.org/10.1016/j.lfs.2020.117719.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao H, Cheng Y, Gao H, Zhuang J, Zhang W, Bian Q, Wang F, Du Y, Li Z, Kong D, Ding D, Wang Y. Perform in Renal Ischemia-Reperfusion Damage. ACS Nano. 2020;14(4):4014–26. https://doi.org/10.1021/acsnano.9b08207. Vivo Monitoring of Mesenchymal Stem Cell-Derived Extracellular Vesicles Enhancing Mitochondrial.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kholia S, Herrera Sanchez MB, Cedrino M, Papadimitriou E, Tapparo M, Deregibus MC, Brizzi MF, Tetta C, Camussi G. Human liver stem cell-derived extracellular vesicles stop Aristolochic Acid-Induced kidney fibrosis. Entrance Immunol. 2018;9:1639. https://doi.org/10.3389/fimmu.2018.01639.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong S, Kim H, Kim J, Kim S, Park TS, Kim TM. Extracellular vesicles from Induced Pluripotent Stem cell-derived mesenchymal stem cells improve the restoration of Acute kidney Damage. Cytotherapy. 2024;26(1):51–62. https://doi.org/10.1016/j.jcyt.2023.09.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, Wu Y, Wang P, Shi M, Wang J, Ma H, Solar D. PSC-MSC-Derived exosomes shield in opposition to kidney fibrosis in Vivo and in Vitro by means of the SIRT6/β-Catenin signaling pathway. Int J Stem Cells. 2021;14(3):310–9. https://doi.org/10.15283/ijsc20184.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Liao J, Su X, Li W, Bi Z, Wang J, Su Q, Huang H, Wei Y, Gao Y, Li J, Liu L, Wang C. Human urine-derived stem cells shield in opposition to Renal Ischemia/Reperfusion Damage in a rat mannequin by way of Exosomal miR-146a-5p which targets IRAK1. Theranostics. 2020;10(21):9561–78. https://doi.org/10.7150/thno.42153.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu D, Zou X, Ju G, Zhang G, Bao E, Zhu Y. Mesenchymal stromal cells derived extracellular vesicles ameliorate Acute Renal Ischemia Reperfusion Damage by Inhibition of mitochondrial fission by means of miR-30. Stem Cells Int. 2016;2016:2093940. https://doi.org/10.1155/2016/2093940.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang G, Zou X, Huang Y, Wang F, Miao S, Liu G, Chen M, Zhu Y. Mesenchymal stromal cell-derived extracellular vesicles shield in opposition to acute kidney Damage by means of Anti-oxidation by enhancing Nrf2/ARE activation in rats. Kidney Blood Press Res. 2016;41(2):119–28. https://doi.org/10.1159/000443413.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dominguez JH, Liu Y, Gao H, Dominguez JM, Xie D, Kelly KJ. Renal tubular cell-derived extracellular vesicles speed up the restoration of established renal ischemia reperfusion Damage. J Am Soc Nephrol. 2017;28(12):3533–44. https://doi.org/10.1681/ASN.2016121278.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Liu H, Xu Ok, Ling Z, Huang Y, Hu Q, Lu Ok, Liu C, Wang Y, Liu N, Zhang X, Xu B, Wu J, Chen S, Zhang G, Chen M. Damage mediated by the HIF-1α/Rab22 pathway and probably affected by microRNAs. Int J Biol Sci. 2019;15(6):1161–76. https://doi.org/10.7150/ijbs.32004. Hypoxia Preconditioned Renal Tubular Epithelial Cell-Derived Extracellular Vesicles Alleviate Renal Ischaemia-Reperfusion.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Zhang C, Du Y, Yang X, Liu M, Yang W, Lei G, Wang G. Exosomal switch of microRNA-590-3p between renal tubular epithelial cells after renal ischemia-reperfusion Damage regulates Autophagy by Concentrating on TRAF6. Chin Med J (Engl). 2022;135(20):2467–77. https://doi.org/10.1097/CM9.0000000000002377.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • ZHU B, HE J, YE X, PEI X, BAI Y, GAO F, GUO L, YONG H, ZHAO W. Position of cisplatin in inducing Acute kidney Damage and pyroptosis in mice by way of the Exosome miR-122/ELAVL1 Regulatory Axis. Physiol Res. 2023;72(6):753–65. https://doi.org/10.33549/physiolres.935129.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou X, Kwon SH, Jiang Ok, Ferguson CM, Puranik AS, Zhu X, Lerman LO. Renal scattered tubular-like cells Confer Protecting results within the stenotic murine kidney mediated by launch of Extracellular vesicles. Sci Rep. 2018;8(1):1263. https://doi.org/10.1038/s41598-018-19750-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai L, Li J, Li H, Tune J, Zhou Y, Lu R, Liu B, Pang Y, Zhang P, Chen J, Liu X, Wu J, Liang C, Zhou J. Renoprotective results of Artemisinin and Hydroxychloroquine Mixture Remedy on IgA Nephropathy by way of suppressing NF-κB signaling and NLRP3 inflammasome activation by exosomes in rats. Biochem Pharmacol. 2019;169:113619. https://doi.org/10.1016/j.bcp.2019.08.021.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Huang H, Liu W, Liu S, Wang XY, Diao ZL, Zhang AH, Guo W, Han X, Dong X, Katilov O. Endothelial progenitor cells-derived exosomal microRNA-21-5p alleviates Sepsis-Induced Acute kidney Damage by inhibiting RUNX1 expression. Cell Dying Dis. 2021;12(4):335. https://doi.org/10.1038/s41419-021-03578-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao P, Zhu Y, Solar L, Zhu W, Lu Y, Zhang J, Mao Y, Chen Q, Zhang F. Circulating Exosomal Mir-1-3p from rats with myocardial infarction performs a protecting impact on contrast-Induced Nephropathy by way of Concentrating on ATG13 and activating the AKT Signaling Pathway. Int J Biol Sci. 2021;17(4):972–85. https://doi.org/10.7150/ijbs.55887.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang X, Chen Y, Xin X, Liu M, Ma Y, Ren Y, Ji J, Yu Q, Qu L, Wang S, Liu G, Xiang C, Yang L. Human amniotic epithelial cells and their derived exosomes shield in opposition to Cisplatin-Induced Acute kidney Damage with out compromising its Antitumor exercise in mice. Entrance Cell Dev Biol. 2021;9:752053. https://doi.org/10.3389/fcell.2021.752053.

    Article 
    PubMed 

    Google Scholar
     

  • Huang H, Liu H, Tang J, Xu W, Gan H, Fan Q, Zhang W. M2 macrophage-derived exosomal mir-25-3p improves excessive glucose-Induced podocytes Damage by means of Activation Autophagy by way of inhibiting DUSP1 expression. IUBMB Life. 2020;72(12):2651–62. https://doi.org/10.1002/iub.2393.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang T-T, Wang B, Wu M, Li Z-L, Feng Y, Cao J-Y, Yin D, Liu H, Tang R-N, Crowley SD, Lv L-L, Liu B-C. Extracellular vesicle-encapsulated IL-10 as Novel Nanotherapeutics in opposition to ischemic AKI. Sci Adv. 2020;6(33):eaaz0748. https://doi.org/10.1126/sciadv.aaz0748.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji C, Zhang J, Shi H, Chen B, Xu W, Jin J, Qian H. Single-cell RNA transcriptomic reveal the mechanism of MSC Derived Small Extracellular vesicles in opposition to DKD Fibrosis. J Nanobiotechnol. 2024;22(1):339. https://doi.org/10.1186/s12951-024-02613-2.

    Article 
    CAS 

    Google Scholar
     

  • Jn Z, C T. Engineered Extracellular vesicles: rising therapeutic methods for translational functions. Int J Mol Sci. 2023;24(20). https://doi.org/10.3390/ijms242015206.

  • Opb W, Má B, J L, Xo B, S EA. Advances in therapeutic functions of Extracellular vesicles. Sci Transl Med. 2019;11(492). https://doi.org/10.1126/scitranslmed.aav8521.

  • Z P, W S, Y C, H T, W L, J C, C C. Extracellular vesicles in tissue Engineering: Biology and Engineered Technique. Adv Healthc Mater. 2022;11(21). https://doi.org/10.1002/adhm.202201384.

  • Y Ak M F. Current progress in Engineered Extracellular vesicles and their Biomedical Purposes. Life Sci. 2024;350. https://doi.org/10.1016/j.lfs.2024.122747.

  • Ma W, Wu D, Lengthy C, Liu J, Xu L, Zhou L, Dou Q, Ge Y, Zhou C, Jia R. Neutrophil-derived nanovesicles ship IL-37 to mitigate renal ischemia-reperfusion Damage by way of Endothelial Cell Concentrating on. J Management Launch. 2024;370:66–81. https://doi.org/10.1016/j.jconrel.2024.04.025.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bellucci L, Montini G, Collino F, Bussolati B. Mesenchymal stromal cell-derived extracellular vesicles go by means of the Filtration Barrier and shield podocytes in a 3D glomerular mannequin below steady perfusion. Tissue Eng Regen Med. 2021;18(4):549–60. https://doi.org/10.1007/s13770-021-00374-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yea J-H, Yoon YM, Lee JH, Yun CW, Lee SH. Exosomes remoted from melatonin-stimulated mesenchymal stem cells enhance kidney perform by regulating irritation and fibrosis in a power kidney Illness Mouse Mannequin. J Tissue Eng. 2021;12:20417314211059624. https://doi.org/10.1177/20417314211059624.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Shang Y, Chen X, Midgley AC, Wang Z, Zhu D, Wu J, Chen P, Wu L, Wang X, Zhang Ok, Wang H, Kong D, Yang Z, Li Z, Chen X. (RGD) peptides increase therapeutic efficacy of Extracellular vesicles in kidney restore. ACS Nano. 2020;14(9):12133–47. https://doi.org/10.1021/acsnano.0c05681. Supramolecular Nanofibers Containing Arginine-Glycine-Aspartate.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grange C, Papadimitriou E, Dimuccio V, Pastorino C, Molina J, O’Kelly R, Niedernhofer LJ, Robbins PD, Camussi G, Bussolati B. Urinary extracellular vesicles carrying Klotho enhance the restoration of renal perform in an Acute Tubular Damage Mannequin. Mol Ther. 2020;28(2):490–502. https://doi.org/10.1016/j.ymthe.2019.11.013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin J, Qian F, Zheng D, He W, Gong J, He Q. Mesenchymal stem cells attenuate renal fibrosis by way of exosomes-mediated supply of microRNA Let-7i-5p antagomir. Int J Nanomed. 2021;16:3565–78. https://doi.org/10.2147/IJN.S299969.

    Article 

    Google Scholar
     

  • Sadeghi S, Tehrani FR, Tahmasebi S, Shafiee A, Hashemi SM. Exosome Engineering in Cell Remedy and Drug Supply. Inflammopharmacology 2023, 31 (1), 145. https://doi.org/10.1007/s10787-022-01115-7

  • Tang T-T, Wang B, Li Z-L, Wen Y, Feng S-T, Wu M, Liu D, Cao J-Y, Yin Q, Yin D, Fu Y-Q, Gao Y-M, Ding Z-Y, Qian J-Y, Wu Q-L, Lv L-L, Liu B-C. Kim-1 focused extracellular vesicles: a New Therapeutic platform for RNAi to deal with AKI. J Am Soc Nephrol. 2021;32(10):2467–83. https://doi.org/10.1681/ASN.2020111561.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Ok, Li R, Chen X, Yan H, Li H, Zhao X, Huang H, Chen S, Liu Y, Wang Ok, Han Z, Han Z-C, Kong D, Chen X-M, Li Z. Renal endothelial cell-targeted extracellular vesicles shield the kidney from ischemic Damage. Adv Sci (Weinh). 2023;10(3):e2204626. https://doi.org/10.1002/advs.202204626.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji C, Zhang J, Shi L, Shi H, Xu W, Jin J, Qian H. Engineered Extracellular vesicle-encapsulated CHIP as Novel Nanotherapeutics for therapy of Renal Fibrosis. NPJ Regen Med. 2024;9(1):3. https://doi.org/10.1038/s41536-024-00348-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang C, Xue Y, Duan Y, Mao C, Wan M. Extracellular vesicles and their Engineering Methods, Supply techniques, and Biomedical Purposes. J Managed Launch. 2024;365:1089–123. https://doi.org/10.1016/j.jconrel.2023.11.057.

    Article 
    CAS 

    Google Scholar
     

  • Zhong X, Tang T-T, Shen A-R, Cao J-Y, Jing J, Wang C, Zhu X-X, Wen Y, Li Z-L, Wang B, Qin S-F, Liu B-C, Lv L-L. Tubular epithelial cells-derived small Extracellular Vesicle-VEGF-A promotes Peritubular Capillary restore in ischemic kidney Damage. NPJ Regen Med. 2022;7(1):73. https://doi.org/10.1038/s41536-022-00268-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, Yao Ok, Huuskes BM, Shen H-H, Zhuang J, Godson C, Brennan EP, Wilkinson-Berka JL, Clever AF, Ricardo SD. Mesenchymal stem cells ship exogenous MicroRNA-Let7c by way of Exosomes to attenuate renal fibrosis. Mol Ther. 2016;24(7):1290–301. https://doi.org/10.1038/mt.2016.90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Wang Y, Li S, Zuo B, Zhang X, Wang F, Solar D. Exosomes Derived from GDNF-Modified Human adipose mesenchymal stem cells ameliorate Peritubular Capillary loss in Tubulointerstitial Fibrosis by activating the SIRT1/eNOS signaling pathway. Theranostics. 2020;10(20):9425–42. https://doi.org/10.7150/thno.43315.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin J, Lv J, Yu S, Chen Y, Wang H, Chen J. Transcript Engineered Extracellular vesicles alleviate Alloreactive Dynamics in Renal Transplantation. Adv Sci (Weinh). 2022;9(31):e2202633. https://doi.org/10.1002/advs.202202633.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi HY, Kim TY, Lee M, Kim SH, Jhee JH, Lee YK, Kim HJ, Park HC. Kidney mesenchymal stem cell-derived Extracellular vesicles Engineered to Categorical Erythropoietin enhance renal Anemia in mice with power kidney illness. Stem Cell Rev Rep. 2022;18(3):980–92. https://doi.org/10.1007/s12015-021-10141-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z-Y, Hou Y-P, Zou X-Y, Xing X-Y, Ju G-Q, Zhong L, Solar J. Oct-4 enhanced the Therapeutic results of mesenchymal stem cell-derived extracellular vesicles in Acute kidney Damage. Kidney Blood Press Res. 2020;45(1):95–108. https://doi.org/10.1159/000504368.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du J, Solar Q, Wang Z, Wang F, Chen F, Wang H, Shang G, Chen X, Ding S, Li C, Wu D, Zhang W, Zhong M, Li Y. Tubular epithelial cells derived-exosomes containing CD26 protects mice in opposition to Renal Ischemia/Reperfusion Damage by sustaining proliferation and dissipating irritation. Biochem Biophys Res Commun. 2021;553:134–40. https://doi.org/10.1016/j.bbrc.2021.03.057.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Utilizing single-Vesicle applied sciences to unravel the heterogeneity of Extracellular vesicles. Nat Protoc. 2021;16(7):3163–85. https://doi.org/10.1038/s41596-021-00551-z.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, Larcher LM, Chen S, Liu N, Zhao Q, Tran PHL, Chen C, Veedu RN, Wang T, Progress. Alternative, and perspective on Exosome isolation – efforts for environment friendly exosome-based theranostics. Theranostics. 2020;10(8):3684–707. https://doi.org/10.7150/thno.41580.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Freitas D, Kim HS, Fabijanic Ok, Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L, Fang J, Rampersaud S, Hoshino A, Matei I, Kenific CM, Nakajima M, Mutvei AP, Sansone P, Buehring W, Wang H, Jimenez JP, Cohen-Gould L, Paknejad N, Brendel M, Manova-Todorova Ok, Magalhães A, Ferreira JA, Osório H, Silva AM, Massey A, Cubillos-Ruiz JR, Galletti G, Giannakakou P, Cuervo AM, Blenis J, Schwartz R, Brady MS, Peinado H, Bromberg J, Matsui H, Reis CA, Lyden D. Identification of distinct nanoparticles and subsets of Extracellular vesicles by uneven Move Subject-Move Fractionation. Nat Cell Biol. 2018;20(3):332–43. https://doi.org/10.1038/s41556-018-0040-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Zhou X, Kong Q, He H, Solar J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Evaluation: a state-of-the-art evaluate. Adv Sci (Weinh). 2024;11(30):e2401069. https://doi.org/10.1002/advs.202401069.

    Article 
    PubMed 

    Google Scholar
     

  • Crescitelli R, Lässer C, Lötvall J. Isolation and characterization of Extracellular vesicle subpopulations from tissues. Nat Protoc. 2021;16(3):1548–80. https://doi.org/10.1038/s41596-020-00466-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou J, Wu Z, Hu J, Yang D, Chen X, Wang Q, Liu J, Dou M, Peng W, Wu Y, Wang W, Xie C, Wang M, Tune Y, Zeng H, Bai C. Excessive-throughput Single-EV Liquid Biopsy: Speedy, Simultaneous, and multiplexed detection of nucleic acids, proteins, and their mixtures. Sci Adv. 2020;6(47):eabc1204. https://doi.org/10.1126/sciadv.abc1204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng J, Jia L, Pan W, Fan Y, Guo J, Luo T, Liu C, Wang W, Zheng L, Li B. Speedy and environment friendly fluorescent aptasensor for PD-L1 optimistic extracellular vesicles isolation and evaluation: EV-ANCHOR. Chem Eng J. 2023;465:142811. https://doi.org/10.1016/j.cej.2023.142811.

    Article 
    CAS 

    Google Scholar
     

  • Liu C, Lin H, Guo J, Yang C, Chen J, Pan W, Cui B, Feng J, Zhang Y, Li B, Yao S, Zheng L. Profiling of single-vesicle floor proteins by way of Droplet Digital Immuno-PCR for Multi-subpopulation Extracellular vesicles counting in the direction of Most cancers Diagnostics. Chem Eng J. 2023;471:144364. https://doi.org/10.1016/j.cej.2023.144364.

    Article 
    CAS 

    Google Scholar
     

  • Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of Extracellular Vesicle Biogenesis and Cargo Choice. Nat Rev Mol Cell Biol. 2023;24(7):454–76. https://doi.org/10.1038/s41580-023-00576-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Droste M, Tertel T, Jeruschke S, Dittrich R, Kontopoulou E, Walkenfort B, Börger V, Hoyer PF, Büscher AK, Thakur BK, Giebel B. Single Extracellular Vesicle Evaluation Carried out by Imaging Move Cytometry and Nanoparticle Monitoring Evaluation consider the accuracy of urinary Extracellular Vesicle Preparation strategies otherwise. Int J Mol Sci. 2021;22(22):12436. https://doi.org/10.3390/ijms222212436.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang W, Zhu X-Y, Lerman A, Lerman LO. Extracellular vesicles as theranostic instruments in kidney illness. Clin J Am Soc Nephrol. 2022;17(9):1418–29. https://doi.org/10.2215/CJN.16751221.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Zhang H, Gu J, Zhang J, Shi H, Qian H, Wang D, Xu W, Pan J, Santos HA. Engineered Extracellular vesicles for Most cancers Remedy. Adv Mater. 2021;33(14):e2005709. https://doi.org/10.1002/adma.202005709.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ceccotti E, Saccu G, Herrera Sanchez MB, Bruno S. Naïve or Engineered Extracellular vesicles from completely different cell sources: therapeutic instruments for kidney illnesses. Pharmaceutics. 2023;15(6):1715. https://doi.org/10.3390/pharmaceutics15061715.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *