Earth-abundant Li-ion cathode supplies with nanoengineered microstructures

  • Huang, Y. et al. Lithium manganese spinel cathodes for lithium‐ion batteries. Adv. Vitality Mater. 11, 2000997 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461–472 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Bulk oxygen stabilization by way of electrode‐electrolyte interphase tailor-made floor actions of Li‐wealthy cathodes. Adv. Vitality Mater. 13, 2202929 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Manthiram, A., Knight, J. C., Myung, S. T., Oh, S. M. & Solar, Y. Ok. Nickel‐wealthy and lithium‐wealthy layered oxide cathodes: progress and views. Adv. Vitality Mater. 6, 1501010 (2016).

    Article 

    Google Scholar
     

  • Armstrong, A. R. & Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S. et al. Factor substitution of a spinel LiMn2O4 cathode. J. Mater. Chem. A 9, 21532–21550 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hua, W. et al. Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat. Commun. 10, 5365 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manthiram, A., Chemelewski, Ok. & Lee, E.-S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Vitality Environ. Sci. 7, 1339–1350 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery provide chain issues: evaluation of potential bottlenecks in essential metals. Joule 1, 229–243 (2017).

    Article 

    Google Scholar
     

  • Banza Lubaba Nkulu, C. et al. Sustainability of artisanal mining of cobalt in DR Congo. Nat. Maintain. 1, 495–504 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode supplies. Nature 556, 185–190 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lun, Z. Y. et al. Design rules for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6, 153–168 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huang, J. et al. Non-topotactic reactions allow excessive charge functionality in Li-rich cathode supplies. Nat. Vitality 6, 706–714 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Clément, R. J., Lun, Z. & Ceder, G. Cation-disordered rocksalt transition metallic oxides and oxyfluorides for prime power lithium-ion cathodes. Vitality Environ. Sci. 13, 345–373 (2020).

    Article 

    Google Scholar
     

  • Li, H. et al. Towards high-energy Mn-based disordered-rocksalt Li-ion cathodes. Joule 6, 53–91 (2022).

    Article 

    Google Scholar
     

  • Home, R. A. et al. Lithium manganese oxyfluoride as a brand new cathode materials exhibiting oxygen redox. Vitality Environ. Sci. 11, 926–932 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yabuuchi, N. et al. Excessive-capacity electrode supplies for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt construction. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freire, M. et al. A brand new energetic Li–Mn–O compound for prime power density Li-ion batteries. Nat. Mater. 15, 173–177 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato, T., Sato, Ok., Zhao, W., Kajiya, Y. & Yabuuchi, N. Metastable and nanosize cation-disordered rocksalt-type oxides: revisit of stoichiometric LiMnO2 and NaMnO2. J. Mater. Chem. A 6, 13943–13951 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cai, Z. et al. Thermodynamically pushed artificial optimization for cation‐disordered rock salt cathodes. Adv. Vitality Mater. 12, 2103923 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Küzma, M. et al. Electrochemical exercise of Li2FeTiO4 and Li2MnTiO4 as potential energetic supplies for Li ion batteries: a comparability with Li2NiTiO4. J. Energy Sources 189, 81–88 (2009).

    Article 

    Google Scholar
     

  • Prabaharan, S., Michael, M., Ikuta, H., Uchimoto, Y. & Wakihara, M. Li2NiTiO4—a brand new optimistic electrode for lithium batteries: soft-chemistry synthesis and electrochemical characterization. Strong State Ion. 172, 39–45 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Ophus, C. Quantitative scanning transmission electron microscopy for supplies science: imaging, diffraction, spectroscopy, and tomography. Annu. Rev. Mater. Res. 53, 105–141 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ophus, C. 4-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and past. Microsc. Microanal. 25, 563–582 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Z. et al. In situ shaped partially disordered phases as earth-abundant Mn-rich cathode supplies. Nat. Vitality 9, 27–36 (2023).

    Article 

    Google Scholar
     

  • Li, L. et al. Fluorination‐enhanced floor stability of cation‐disordered rocksalt cathodes for Li‐ion batteries. Adv. Funct. Mater. 31, 2101888 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ahn, J. et al. Ultrahigh‐capability rocksalt cathodes enabled by biking‐activated structural modifications. Adv. Vitality Mater. 13, 2300221 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ahn, J. et al. Distinctive biking efficiency enabled by native structural rearrangements in disordered rocksalt cathodes. Adv. Vitality Mater. 12, 2200426 (2022).

    Article 
    CAS 

    Google Scholar
     

  • City, A., Lee, J. & Ceder, G. The configurational area of rocksalt-type oxides for high-capacity lithium battery electrodes. Adv. Vitality Mat. https://doi.org/10.1002/aenm.201400478 (2014).

  • Jones, M. A. et al. Brief-range ordering in a battery electrode, the ‘cation-disordered’ rocksalt Li1.25Nb0.25Mn0.5O2. Chem. Commun. 55, 9027–9030 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zeltmann, S. E. et al. Uncovering polar vortex buildings by inversion of a number of scattering with a stacked Bloch wave mannequin. Ultramicroscopy 250, 113732 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holzwarth, U. & Gibson, N. The Scherrer equation versus the ‘Debye–Scherrer equation’. Nat. Nanotechnol. 6, 534–534 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, E. et al. Nanocomposite engineering of a high-capacity partially ordered cathode for Li-ion batteries. Adv. Mater. 35, e2208423 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, T., Yang, J., Barroso-Luque, L. & Ceder, G. Eradicating the two-phase transition in spinel LiMn2O4 by way of cation dysfunction. ACS Vitality Lett. 8, 314–319 (2022).

    Article 

    Google Scholar
     

  • Cai, Z. et al. Realizing steady cation order-to-disorder tuning in a category of high-energy spinel-type Li-ion cathodes. Matter 4, 3897–3916 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Okubo, M. et al. Quick Li-ion insertion into nanosized LiMn2O4 with out area boundaries. ACS Nano 4, 741–752 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fisher, M. E. & Berker, A. N. Scaling for first-order section transitions in thermodynamic and finite methods. Phys. Rev. B 26, 2507–25143 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Nienhuis, B., Berker, A., Riedel, E. Ok. & Schick, M. First-and second-order section transitions in Potts fashions: renormalization-group answer. Phys. Rev. Lett. 43, 737–740 (1979).

    Article 

    Google Scholar
     

  • Ji, H. et al. Ultrahigh energy and power density in partially ordered lithium-ion cathode supplies. Nat. Vitality 5, 213–221 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Abdellahi, A., City, A., Dacek, S. & Ceder, G. The impact of cation dysfunction on the common Li intercalation voltage of transition-metal oxides. Chem. Mater. 28, 3659–3665 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Abdellahi, A., City, A., Dacek, S. & Ceder, G. Understanding the impact of cation dysfunction on the voltage profile of lithium transition-metal oxides. Chem. Mater. 28, 5373–5383 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Investigating particle measurement‐dependent redox kinetics and cost distribution in disordered rocksalt cathodes. Adv. Funct. Mater. 32, 2110502 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Noh, H.-J., Youn, S., Yoon, C. S. & Solar, Y.-Ok. Comparability of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode materials for lithium-ion batteries. J. Energy Sources 233, 121–130 (2013).

    Article 
    CAS 

    Google Scholar
     

  • He, P., Wang, H., Qi, L. & Osaka, T. Electrochemical traits of layered LiNi1/3Co1/3Mn1/3O2 and with totally different synthesis circumstances. J. Energy Sources 160, 627–632 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Yamada, A., Chung, S.-C. & Hinokuma, Ok. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Padhi, A. Ok., Nanjundaswamy, Ok. S. & Goodenough, J. B. Phospho‐olivines as optimistic‐electrode supplies for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Thackeray, M. M., Lee, E., Shi, B. Y. & Croy, J. R. From LiMn2O4 to partially-disordered Li2MnNiO4: the evolution of lithiated-spinel cathodes for Li-ion batteries. J. Electrochem. Soc. https://doi.org/10.1149/1945-7111/ac50dd (2022).

  • Huang, T.-Y., Crafton, M. J., Yue, Y., Tong, W. & McCloskey, B. D. Deconvolution of intermixed redox processes in Ni-based cation-disordered Li-excess cathodes. Vitality Environ. Sci. 14, 1553–1562 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Savitzky, B. H. et al. py4DSTEM: a software program bundle for four-dimensional scanning transmission electron microscopy information evaluation. Microsc. Microanal. 27, 712–743 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGibney, G., Smith, M., Nichols, S. & Crawley, A. Quantitative analysis of a number of partial Fourier reconstruction algorithms utilized in MRI. Magn. Reson. Med. 30, 51–59 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: information evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiao, R. et al. Excessive-efficiency in situ resonant inelastic X-ray scattering (iRIXS) endstation on the Superior Gentle Supply. Rev. Sci. Instrum. 88, 033106 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Chuang, Y.-D. et al. Modular delicate X-ray spectrometer for functions in power sciences and quantum supplies. Rev. Sci. Instrum. 88, 013110 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *