Umbilical wire blood-derived exosomes attenuate dopaminergic neuron harm of Parkinson’s illness mouse mannequin | Journal of Nanobiotechnology

  • Iba M, McDevitt RA, Kim C, Roy R, Sarantopoulou D, Tommer E, Siegars B, Sallin M, Kwon S, Sen JM, et al. Ageing exacerbates the mind inflammatory micro-environment contributing to alpha-synuclein pathology and practical deficits in a mouse mannequin of DLB/PD. Mol Neurodegener. 2022;17:60.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sano T, Umemoto G, Fujioka S, Iwashita Y, Dotsu Y, Wada N, Tsuboi Y. Relationship between motor dysfunction and chewing motion in sufferers with Parkinson’s illness: a transversal examine. Entrance Neurol. 2022;13:1062134.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaffner SL, Wassouf Z, Lazaro DF, Xylaki M, Gladish N, Lin DTS, MacIsaac J, Ramadori Okay, Hentrich T, Schulze-Hentrich JM, et al. Alpha-synuclein overexpression induces epigenomic dysregulation of glutamate signaling and locomotor pathways. Hum Mol Genet. 2022;31:3694–714.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Verma DK, Search engine marketing BA, Ghosh A, Ma SX, Hernandez-Quijada Okay, Andersen JK, Ko HS, Kim YH. Alpha-synuclein preformed fibrils induce mobile senescence in Parkinson’s illness fashions. Cells. 2021;10(7):1694.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kritsilis M, Rizou SV, Koutsoudaki PN, Evangelou Okay, Gorgoulis VG, Papadopoulos D. Ageing, mobile senescence and neurodegenerative illness. Int J Mol Sci. 2018;19(10):2937.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA. Ageing as a danger issue for neurodegenerative illness. Nat Rev Neurol. 2019;15:565–81.

    Article 
    PubMed 

    Google Scholar
     

  • Muller-Nedebock AC, Brennan RR, Venter M, Pienaar IS, van der Westhuizen FH, Elson JL, Ross OA, Bardien S. The unresolved function of mitochondrial DNA in Parkinson’s illness: an outline of printed research, their limitations, and future prospects. Neurochem Int. 2019;129:104495.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qi S, Yin P, Wang L, Qu M, Kan GL, Zhang H, Zhang Q, Xiao Y, Deng Y, Dong Z, et al. Prevalence of Parkinson’s illness: a community-based examine in China. Mov Disord. 2021;36:2940–4.

    Article 
    PubMed 

    Google Scholar
     

  • Yi ZM, Qiu TT, Zhang Y, Liu N, Zhai SD. Levodopa/carbidopa/entacapone versus levodopa/dopa-decarboxyiase inhibitor for the therapy of Parkinson’s illness: systematic evaluation, meta-analysis, and financial analysis. Ther Clin Danger Manag. 2018;14:709–19.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen W, Huang Q, Ma S, Li M. Progress in dopaminergic cell substitute and regenerative methods for Parkinson’s illness. ACS Chem Neurosci. 2019;10:839–51.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Parmar M, Grealish S, Henchcliffe C. The way forward for stem cell therapies for Parkinson illness. Nat Rev Neurosci. 2020;21:103–15.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yan SS, de Souza SC, Xie ZD, Bao YX. Analysis progress in medical trials of stem cell remedy for stroke and neurodegenerative ailments. Ibrain. 2023;9:214–30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allan LE, Petit GH, Brundin P. Cell transplantation in Parkinson’s illness: issues and views. Curr Opin Neurol. 2010;23:426–32.

    Article 
    PubMed 

    Google Scholar
     

  • Kim MS, Yoon S, Choi J, Kim YJ, Lee G. Stem cell-based approaches in parkinson’s illness analysis. Int J Stem Cells. 2024;17(2)1–16. https://doi.org/10.15283/ijsc23169.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang X, He Y, Liu J, Xu J, Peng Q. Exosomes: the endogenous nanomaterials filled with potential for prognosis and therapy of neurologic problems. Colloids Surf B Biointerfaces. 2024;239:113938.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mathieu M, Martin-Jaular L, Lavieu G, Thery C. Specificities of secretion and uptake of exosomes and different extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21:9–17.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nasser MI, Masood M, Adlat S, Gang D, Zhu S, Li G, Li N, Chen J, Zhu P. Mesenchymal stem cell-derived exosome microRNA as remedy for cardiac ischemic harm. Biomed Pharmacother. 2021;143:112118.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Sign. 2021;19:47.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Anel A, Gallego-Lleyda A, de Miguel D, Naval J, Martinez-Lostao L. Position of exosomes within the regulation of T-cell mediated immune responses and in autoimmune illness. Cells. 2019;8(2):154.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li S, Luo L, He Y, Li R, Xiang Y, Xing Z, Li Y, Albashari AA, Liao X, Zhang Okay, et al. Dental pulp stem cell-derived exosomes alleviate cerebral ischaemia-reperfusion harm by means of suppressing inflammatory response. Cell Prolif. 2021;54:e13093.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang J, Buller BA, Zhang ZG, Zhang Y, Lu M, Rosene DL, Medalla M, Moore TL, Chopp M. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and scale back neuroinflammation within the demyelinating central nervous system. Exp Neurol. 2022;347:113895.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage restore by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018;156:16–27.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu XH, Yuan TJ, Dad HA, Shi MY, Huang YY, Jiang ZH, Peng LH. Plant exosomes as novel nanoplatforms for MicroRNA switch stimulate neural differentiation of stem cells in vitro and in vivo. Nano Lett. 2021;21:8151–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S, Xu J. The immunomodulatory exercise of human umbilical wire blood-derived mesenchymal stem cells in vitro. Immunology. 2009;126:220–32.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hu Y, Rao SS, Wang ZX, Cao J, Tan YJ, Luo J, Li HM, Zhang WS, Chen CY, Xie H. Exosomes from human umbilical wire blood speed up cutaneous wound therapeutic by means of miR-21-3p-mediated promotion of angiogenesis and fibroblast perform. Theranostics. 2018;8:169–84.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang YJ, Cao J, Lee CY, Wu YM. Umbilical wire blood plasma-derived exosomes as a novel remedy to reverse liver fibrosis. Stem Cell Res Ther. 2021;12:568.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhong XQ, Wang D, Chen S, Zheng J, Hao TF, Li XH, Luo LH, Gu J, Lian CY, Li XS, Chen DJ. Umbilical wire blood-derived exosomes from wholesome time period pregnancies shield towards hyperoxia-induced lung harm in mice. Clin Transl Sci. 2023;16:966–77.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Castellano JM, Mosher KI, Abbey RJ, McBride AA, James ML, Berdnik D, Shen JC, Zou B, Xie XS, Tingle M, et al. Human umbilical wire plasma proteins revitalize hippocampal perform in aged mice. Nature. 2017;544:488–92.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sahu A, Clemens ZJ, Shinde SN, Sivakumar S, Pius A, Bhatia A, Picciolini S, Carlomagno C, Gualerzi A, Bedoni M, et al. Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles. Nat Ageing. 2021;1:1148–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta D, Zickler AM, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev. 2021;178:113961.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sveinbjornsdottir S. The medical signs of Parkinson’s illness. J Neurochem. 2016;139(Suppl 1):318–24.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tolleson C, Claassen D. The perform of tyrosine hydroxylase within the regular and Parkinsonian mind. CNS Neurol Disord Drug Targets. 2012;11:381–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Episcopo FL, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B. Reactive astrocytes are key gamers in nigrostriatal dopaminergic neurorepair within the MPTP mouse mannequin of Parkinson’s illness: deal with endogenous neurorestoration. Curr Ageing Sci. 2013;6:45–55.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mirzaei H, Sedighi S, Kouchaki E, Barati E, Dadgostar E, Aschner M, Tamtaji OR. Probiotics and the therapy of Parkinson’s illness: an replace. Cell Mol Neurobiol. 2022;42:2449–57.

    Article 
    PubMed 

    Google Scholar
     

  • Tobin MK, Musaraca Okay, Disouky A, Shetti A, Bheri A, Honer WG, Kim N, Dawe RJ, Bennett DA, Arfanakis Okay, Lazarov O. Human hippocampal neurogenesis persists in aged adults and Alzheimer’s illness sufferers. Cell Stem Cell. 2019;24(974–982):e973.


    Google Scholar
     

  • Kutuzov MA, Bennett N, Andreeva AV. Protein phosphatase with EF-hand domains 2 (PPEF2) is a potent detrimental regulator of apoptosis sign regulating kinase-1 (ASK1). Int J Biochem Cell Biol. 2010;42:1816–22.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He JG, Zhou HY, Xue SG, Lu JJ, Xu JF, Zhou B, Hu ZL, Wu PF, Lengthy LH, Ni L, et al. Transcription issue TWIST1 integrates dendritic reworking and continual stress to advertise depressive-like behaviors. Biol Psychiatry. 2021;89:615–26.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Weekley CM, Jeong G, Tierney ME, Hossain F, Maw AM, Shanu A, Harris HH, Witting PK. Selenite-mediated manufacturing of superoxide radical anions in A549 most cancers cells is accompanied by a selective improve in SOD1 focus, enhanced apoptosis and Se-Cu bonding. J Biol Inorg Chem. 2014;19:813–28.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kumari R, Jat P. Mechanisms of mobile senescence: cell cycle arrest and senescence related secretory phenotype. Entrance Cell Dev Biol. 2021;9:645593.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engeland Okay. Cell cycle regulation: p53–p21-RB signaling. Cell Demise Differ. 2022;29:946–60.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • de Mera-Rodriguez JA, Alvarez-Hernan G, Ganan Y, Solana-Fajardo J, Martin-Partido G, Rodriguez-Leon J, Francisco-Morcillo J. Markers of senescence are sometimes related to neuronal differentiation within the creating sensory techniques. Histol Histopathol. 2023;38:493–502.

    PubMed 

    Google Scholar
     

  • Wang H, Zhang Z, Huang J, Zhang P, Xiong N, Wang T. The contribution of Cdc2 in rotenone-induced G2/M arrest and caspase-3-dependent apoptosis. J Mol Neurosci. 2014;53:31–40.

    Article 
    PubMed 

    Google Scholar
     

  • Hoglinger GU, Breunig JJ, Depboylu C, Rouaux C, Michel PP, Alvarez-Fischer D, Boutillier AL, Degregori J, Oertel WH, Rakic P, et al. The pRb/E2F cell-cycle pathway mediates cell dying in Parkinson’s illness. Proc Natl Acad Sci U S A. 2007;104:3585–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cagnol S, Chambard JC. ERK and cell dying: mechanisms of ERK-induced cell dying–apoptosis, autophagy and senescence. FEBS J. 2010;277:2–21.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Garcia-Flores N, Jimenez-Suarez J, Garnes-Garcia C, Fernandez-Aroca DM, Sabater S, Andres I, Fernandez-Aramburo A, Ruiz-Hidalgo MJ, Belandia B, Sanchez-Prieto R, Cimas FJ. P38 MAPK and radiotherapy: foes or buddies? Cancers (Basel). 2023;15(3):861.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S, Solar P. Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced untimely senescence. Mol Cell Biol. 2002;22:3389–403.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suthprasertporn N, Suwanna N, Thangnipon W. Protecting results of diarylpropionitrile towards hydrogen peroxide-induced harm in human neuroblastoma SH-SY5Y cells. Drug Chem Toxicol. 2022;45:44–51.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Search engine marketing Okay, Matunari I, Yamamoto T. Cerebral cortical thinning in Parkinson’s illness is dependent upon the age of onset. PLoS ONE. 2023;18:e0281987.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gore E, Duparc T, Genoux A, Perret B, Najib S, Martinez LO. The multifaceted ATPase inhibitory issue 1 (IF1) in vitality metabolism reprogramming and mitochondrial dysfunction: a brand new participant in age-associated problems? Antioxid Redox Sign. 2022;37:370–93.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Simon DK, Tanner CM, Brundin P. Parkinson illness epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36:1–12.

    Article 
    PubMed 

    Google Scholar
     

  • Bonafede R, Scambi I, Peroni D, Potrich V, Boschi F, Benati D, Bonetti B, Mariotti R. Exosome derived from murine adipose-derived stromal cells: neuroprotective impact on in vitro mannequin of amyotrophic lateral sclerosis. Exp Cell Res. 2016;340:150–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu Y, Xu R, Chen CY, Rao SS, Xia Okay, Huang J, Yin H, Wang ZX, Cao J, Liu ZZ, et al. Extracellular vesicles from human umbilical wire blood ameliorate bone loss in senile osteoporotic mice. Metabolism. 2019;95:93–101.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rodrigues SC, Cardoso RMS, Gomes CF, Duarte FV, Freire PC, Neves R, Simoes-Correia J. Toxicological profile of umbilical wire blood-derived small extracellular vesicles. Membranes (Basel). 2021;11(9):647.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ou Y, Yang Y, Wang Y, Su H, Zhou YK. Results of extracellular vesicles derived from human umbilical wire blood mesenchymal stem cells on cell immunity in nonobese mice. Stem Cells Int. 2024;2024:4775285.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khacho M, Harris R, Slack RS. Mitochondria as central regulators of neural stem cell destiny and cognitive perform. Nat Rev Neurosci. 2019;20:34–48.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Navarro Negredo P, Yeo RW, Brunet A. Ageing and rejuvenation of neural stem cells and their niches. Cell Stem Cell. 2020;27:202–23.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Arrigo AP. Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and surroundings of the cell. Cell Stress Chaperones. 2017;22:517–29.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hoffman L, Jensen CC, Yoshigi M, Beckerle M. Mechanical alerts activate p38 MAPK pathway-dependent reinforcement of actin through mechanosensitive HspB1. Mol Biol Cell. 2017;28:2661–75.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen L, Liu L, Yin J, Luo Y, Huang S. Hydrogen peroxide-induced neuronal apoptosis is related to inhibition of protein phosphatase 2A and 5, resulting in activation of MAPK pathway. Int J Biochem Cell Biol. 2009;41:1284–95.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cai Z, Guo H, Qian J, Liu W, Li Y, Yuan L, Zhou Y, Lin R, Xie X, Yang Q, et al. Results of bone morphogenetic protein 4 on TGF-beta1-induced cell proliferation, apoptosis, activation and differentiation in mouse lung fibroblasts through ERK/p38 MAPK signaling pathway. PeerJ. 2022;10:e13775.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N. Involvement of p38 MAPK in synaptic perform and dysfunction. Int J Mol Sci. 2020;21(16):5624.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ratih Okay, Lee YR, Chung KH, Tune DH, Lee KJ, Kim DH, An JH. L-Theanine alleviates MPTP-induced Parkinson’s illness by focusing on Wnt/beta-catenin signaling mediated by the MAPK signaling pathway. Int J Biol Macromol. 2023;226:90–101.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu Y, Yu L, Xu Y, Tang X, Wang X. Substantia nigra Smad3 signaling deficiency: relevance to getting old and Parkinson’s illness and roles of microglia, proinflammatory components, and MAPK. J Neuroinflamm. 2020;17:342.

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *