Seed priming with graphene oxide improves salinity tolerance and will increase productiveness of peanut via modulating a number of physiological processes | Journal of Nanobiotechnology

  • IPCC. Local weather Change 2007: the bodily science foundation. Contribution of Working Group I to the Fourth Evaluation Report of the Intergovernmental Panel on Local weather Change. Cambridge, UK & New York, NY, USA: Cambridge College Press; 2007.


    Google Scholar
     

  • IPCC. Local weather Change 2014: mitigation of Local weather Change. Contribution of Working Group III to the Fifth Evaluation Report of the Intergovernmental Panel on Local weather Change. Cambridge, UK & New York, NY, USA: Cambridge College Press; 2014.


    Google Scholar
     

  • Roy SJ, Negrão S, Tester M. Salt resistant crop crops. Curr Opin Biotechnol. 2014;26:115–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Julkowska MM, Testerink C. Tuning plant signaling and development to outlive salt. Traits Plant Sci. 2015;20:586–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI. Plant salt-tolerance mechanisms. Traits Plant Sci. 2014;19:371–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paulucci NS, Medeot DB, Dardanelli MS, de Lema MG. Development temperature and salinity impression fatty acid composition and diploma of unsaturation in peanut-nodulating rhizobia. Lipids. 2011;46:435–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling throughout drought and salinity stresses. Plant Cell Environ. 2010;33:453–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jimenez-Lopez JC, Singh KB, Clemente A, Nelson MN, Ochatt S, Smith PMC. Editorial: legumes for international meals safety. Entrance Plant Sci. 2020;11:00926.

    Article 

    Google Scholar
     

  • Lobby CH, Lam H-M, Nguyen HT, Siddique KHM, Varshney RK, Colmer TD, Cowling W, Bramley H, Mori TA, Hodgson JM, Cooper JW, Miller AJ, Kunert Okay, Vorster J, Cullis C, Ozga JA, Wahlqvist ML, Liang Y, Shou H, Shi Okay, Yu J, Fodor N, Kaiser BN, Wong F-L, Valliyodan B, Considine MJ. Neglecting legumes has compromised human well being and sustainable meals manufacturing. Nat Vegetation. 2016;2:16112.

    Article 
    PubMed 

    Google Scholar
     

  • Si T, Wang X, Zhou Y, Zhang Okay, Xie W, Yuan H, Wang Y, Solar Y. Seed yield and high quality responses of oilseed crops to simulated nitrogen deposition: a meta-analysis of discipline research. GCB Bioenergy. 2022;14:959–71.

    Article 
    CAS 

    Google Scholar
     

  • Becana M, Matamoros MA, Udvardi M, Dalton DA. Latest insights into antioxidant defenses of legume root nodules. New Phytol. 2010;188:960–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Considine MJ, Siddique KHM, Lobby CH. Nature’s pulse energy: legumes, meals safety and local weather change. J Exp Bot. 2017;68:1815–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao J, Chen J, Beillouin D, Lambers H, Yang Y, Smith P, Zeng Z, Olesen JE, Zang H. World systematic overview with meta-analysis reveals yield benefit of legume-based rotations and its drivers. Nat Commun. 2022;13:4926.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu J, Liu Y, Zou X, Zhang X, Yu X, Wang Y, Si T. Rotational strip peanut/cotton intercropping improves agricultural manufacturing via modulating plant development, root exudates, and soil microbial communities. Agric Ecosyst Environ. 2024;359:108767.

    Article 
    CAS 

    Google Scholar
     

  • Xu J, Chen Q, Cai Z, Ren Y, Zhao Y, Cheng J, Huang B. A feasibility examine of manufacturing a peanut oil matrix candidate reference materials and its utility to assist monitoring of aflatoxins statues for public well being functions. Meals Chem. 2018;268:395–401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cherif AO, Pepe C, Messaouda MB. Fatty acids profile of untamed and cultivar Tunisian peanut oilseeds (A. Hypogaea L.) at totally different developmental levels. J Oleo Sci. 2023;72:379–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis JP, Sweigart DS, Value KM, Dean LL, Sanders TH. Refractive index and density measurements of peanut oil for figuring out oleic and linoleic acid contents. J Am Oil Chem Soc. 2013;90:199–206.

    Article 
    CAS 

    Google Scholar
     

  • Bruning B, Rozema J. Symbiotic nitrogen fixation in legumes: views for saline agriculture. Environ Exp Bot. 2013;92:134–43.

    Article 
    CAS 

    Google Scholar
     

  • Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Migdadi HM, Alghamdi SS, Siddique KHM. Results, tolerance mechanisms and administration of salt stress in grain legumes. Plant Physiol Biochem. 2017;118:199–217.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nadeem M, Li J, Yahya M, Wang M, Ali A, Cheng A, Wang X, Ma C. Grain legumes and worry of salt stress: concentrate on mechanisms and administration methods. Int J Mol Sci. 2019;20.

  • Cao J, Chen Z, Wang L, Yan N, Lin J, Hou L, Zhao Y, Huang C, Wen T, Li C, Rahman Su, Liu Z, Qiao J, Zhao J, Wang J, Shi Y, Qin W, Si T, Wang Y, Tang Okay. Graphene enhances artemisinin manufacturing within the conventional medicinal plant Artemisia annua by way of dynamic physiological processes and miRNA regulation. Plant Commun. 2024;5(3):100742.

  • Chae S, Le T-H, Park CS, Choi Y, Kim S, Lee U, Heo E, Lee H, Kim YA, Kwon OS, Yoon H. Anomalous restoration of sp2 hybridization in graphene functionalization. Nanoscale. 2020;12:13351–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thakur Okay, Kandasubramanian B. Graphene and graphene oxide-based composites for elimination of natural pollution: a overview. J Chem Eng Knowledge. 2019;64:833–67.

    Article 
    CAS 

    Google Scholar
     

  • Singh Okay, Ohlan A, Pham VH, Balasubramaniyan R., Swati Varshney, Jinhee Jang et al. Nanostructured graphene/Fe3O4 included polyaniline as a excessive efficiency defend in opposition to electromagnetic air pollution. Nanoscale. 2013;5:2411–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park S, Choi KS, Kim S, Gwon Y, Kim J. Graphene oxide-assisted promotion of plant development and stability. Nanomater. 2020;10:758.

  • Chen J, Cao S, Xi C, Chen Y, Li X, Zhang L, Wang G, Chen Y, Chen Z. A novel magnetic β-cyclodextrin modified graphene oxide adsorbent with excessive recognition functionality for five plant development regulators. Meals Chem. 2018;239:911–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu Okay, Shen D, Dong S, Chen C, Lin S, Lu S, Xing B, Mao L. Uptake of graphene enhanced the photophosphorylation carried out by chloroplasts in rice crops. Nano Res. 2020;13:3198–205.

    Article 
    CAS 

    Google Scholar
     

  • Qiu Y, Wang Z, Owens ACE, Kulaots I, Chen Y, Kane AB, Harm RH. Antioxidant chemistry of graphene-based supplies and its position in oxidation safety know-how. Nanoscale. 2014;6:11744–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu H, Wang L, Qu J, Wang X, Huang F, Jiao Y, Zhang Y. Bi2O3/TiO2@diminished graphene oxide with enzyme-like properties effectively inactivates Pseudomonas syringae Pv. Tomato DC3000 and enhances abiotic stress tolerance in tomato. Environ Science: Nano. 2022;9:118–32.

    CAS 

    Google Scholar
     

  • Gao M, Yang Y, Music Z. Results of graphene oxide on cadmium uptake and photosynthesis efficiency in wheat seedlings. Ecotoxicol Environ Saf. 2019;173:165–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, Wang Z, White JC, Xing B. Graphene within the aquatic atmosphere: Adsorption, dispersion, toxicity and transformation. Environ Sci Technol. 2014;48:9995–10009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmad SZN, Wan Salleh WN, Ismail AF, Yusof N, Yusop M, Aziz MZ, F. Adsorptive elimination of heavy metallic ions utilizing graphene-based nanomaterials: toxicity, roles of purposeful teams and mechanisms. Chemosphere. 2020;248:126008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Okay, Li Y, Tan X, Peng R, Liu Z. Habits and toxicity of graphene and its functionalized derivatives in organic programs. Small. 2013;9:1492–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibrahim EA. Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol. 2016;192:38–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M, Zhang X, Ali S, Huang L. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative injury, antioxidant enzymes and ions uptake are main determinants of salt tolerant capability. Plant Physiol Biochem. 2020;156:221–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nile SH, Thiruvengadam M, Wang Y, Samynathan R, Shariati MA, Rebezov M, Nile A, Solar M, Venkidasamy B, Xiao J, Kai G. Nano-priming as rising seed priming know-how for sustainable agriculture—current developments and future views. J Nanobiotechnol. 2022;20:254.

    Article 
    CAS 

    Google Scholar
     

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A. Seed priming: cutting-edge and new views. Plant Cell Rep. 2015;34:1281–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jisha KC, Vijayakumari Okay, Puthur JT. Seed priming for abiotic stress tolerance: an outline. Acta Physiol Plant. 2013;35:1381–96.

    Article 

    Google Scholar
     

  • Liu Y, Lu J, Cui L, Tang Z, Ci D, Zou X, Zhang X, Yu X, Wang Y, Si T. The multifaceted roles of Arbuscular Mycorrhizal Fungi in peanut responses to salt, drought, and chilly stress. BMC Plant Biol. 2023;23:36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin W, Yan H, Zou B, Guo R, Ci D, Tang Z, Zou X, Zhang X, Yu X, Wang Y, Si T. Arbuscular mycorrhizal fungi alleviate salinity stress in peanut: proof from pot-grown and discipline experiments. Meals Vitality Secur. 2021;10:e314.

    Article 

    Google Scholar
     

  • Si T, Lu J, Cao Y, Tang Z, Ci D, Yu X, Zhang X, Wang Y, Zou X. Physiological, transcriptional and metabolomic proof for arbuscular mycorrhizal fungi and Lactobacillus plantarum in peanut resistance to salinity stress. J Agron Crop Sci. 2024;210:e12672.

  • Huo L, Liu B, Gao Z, Zhang J. 0D/2D heterojunctions of molybdenum carbide-tungsten carbide quantum dots/N-doped graphene nanosheets as superior and sturdy electrocatalysts for hydrogen evolution response. J Mater Chem A. 2017;5:18494–501.

    Article 
    CAS 

    Google Scholar
     

  • Zhao J, Pei S, Ren W, Gao L, Cheng H-M. Environment friendly preparation of large-area graphene oxide sheets for clear conductive movies. ACS Nano. 2010;4:5245–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Solar L, Solar Y, You X, Wan Y, Wu X, Tan M, Wu Q, Bai X, Ye X, Peng L, Zhao G, Xiang D, Zou L. Integrating transcriptome and physiological analyses to elucidate the molecular responses of buckwheat to graphene oxide. J Hazard Mater. 2022;424:127443.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang Y, Cheng F, Zhou Y, Xia X, Mao W, Shi Okay, Chen Z, Yu J. Mobile glutathione redox homeostasis performs an essential position within the brassinosteroid-induced enhance in CO2 assimilation in Cucumis sativus. New Phytol. 2012;194:932–43.

  • Cao J, Zhao B, Huang C, Chen Z, Zhao T, Liu H, Hu G, Shangguan X, Shan C, Wang L, Zhang T, Wendel JF, Guan X, Chen X. The miR319-targeted GhTCP4 promotes the transition from cell elongation to wall thickening in cotton fiber. Mol Plant. 2020;13:1063–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo R, Yan H, Li X, Zou X, Zhang X, Yu X, Ci D, Wang Y, Si T. Inexperienced leaf unstable (Z)-3-hexeny-1-yl acetate reduces salt stress in peanut by affecting photosynthesis and mobile redox homeostasis. Physiol Plant. 2020;170:75–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian S, Guo R, Zou X, Zhang X, Yu X, Zhan Y, Ci D, Wang M, Wang Y, Si T. Priming with the inexperienced leaf unstable (Z)-3-Hexeny-1-yl acetate enhances salinity stress tolerance in peanut (Arachis hypogaea L.) seedlings. Entrance Plant Sci. 2019;10:785.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lichtenthaler HK, Wellburn AR. Determinations of whole carotenoids and chlorophylls a and b of leaf extracts in several solvents. Biochem Soc Trans. 1983;11:591–2.

    Article 
    CAS 

    Google Scholar
     

  • Jensen CR, Jacobsen SE, Andersen MN, Núñez N, Andersen SD, Rasmussen L, Mogensen VO. Leaf gasoline change and water relation traits of discipline quinoa (Chenopodium quinoa Willd.) Throughout soil drying. Eur J Agron. 2000;13:11–25.

    Article 

    Google Scholar
     

  • Griffith M, Mclntyre HCH. The interrelationship of development and frost tolerance in winter rye. Physiol Plant. 1993;87:335–44.

    Article 

    Google Scholar
     

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. Subcellular localization of H2O2 in crops. H2O2 accumulation in papillae and hypersensitive response throughout the barley-powdery mildew interplay. Plant J. 1997;11:1187–94.

    Article 
    CAS 

    Google Scholar
     

  • Jabs T, Dietrich RA, Dangl JL. Initiation of runway cell loss of life in an Arabidopsis mutant by extracellular superoxide. Science. 1996;27:1853–6.

    Article 

    Google Scholar
     

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 crops. EMBO J. 1997;16:4806–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elstner E, Heupel A. Inhibition of nitrite formation from hydroxylammoniumchloride: a easy assay for superoxide dismutase. Anal Biochem. 1976;70:616–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stewart RRC, Bewley JD. Lipid Peroxidation Related to Accelerated growing older of soybean. Axes Plant Physiol. 1980;65:245–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patra HK, Kar M, Mishra D. Catalase exercise in leaves and cotyledons throughout Plant Improvement and Senescence). Biochemie Und Physiologie Der Pflanzen. 1978;172:385–90.

    Article 
    CAS 

    Google Scholar
     

  • Cakmak I, Marschner H. Magnesium deficiency and excessive gentle depth improve actions of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992;98:1222–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakano Y, Asada Okay. Hydrogen peroxide is scavenged by ascorbate- particular peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–80.

    CAS 

    Google Scholar
     

  • Hodges DM, DeLong JM, Forney CF, Prange RK. Bettering the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and different interfering compounds. Planta. 1999;207:604–11.

    Article 
    CAS 

    Google Scholar
     

  • Buysse JAN, Merckx R. An improved colorimetric technique to quantify sugar content material of plant tissue. J Exp Bot. 1993;44:1627–9.

    Article 
    CAS 

    Google Scholar
     

  • Moore S, Stein WH. A modified ninhydrin reagent for the photometric dedication of amino acids and associated compounds. J Biol Chem. 1954;211:907–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbano DM, Lynch JM, Fleming JR. Direct and oblique dedication of true protein content material of milk by Kjeldahl evaluation: collaborative examine. J Affiliation Official Anal Chem. 1991;74:281–8.

    CAS 

    Google Scholar
     

  • Khashi u Rahman M, Wang X, Gao D, Zhou X, Wu F. Root exudates enhance phosphorus availability within the tomato/potato onion intercropping system. Plant Soil. 2021;464:45–62.

    Article 
    CAS 

    Google Scholar
     

  • Chakraborty Okay, Bhaduri D, Meena HN, Kalariya Okay. Exterior potassium (Okay+) utility improves salinity tolerance by selling Na+-exclusion, Okay+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiol Biochem. 2016;103:143–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao JF, Huang CC, Liu JE, Li CY, Liu X, Zheng ZS, Hou LP, Huang JQ, Wang LJ, Zhang YG, Shangguan XX, Chen ZW. Comparative Genomics and Purposeful Research of Putative m6A Methyltransferase (METTL) Genes in Cotton. Int J Mol Sci. 2022;23.

  • Zhao B, Cao JF, Hu GJ, Chen ZW, Wang LY, Shangguan XX, Wang LJ, Mao YB, Zhang TZ, Wendel JF, Chen XY. Core cis-element variation confers subgenome-biased expression of a transcription issue that capabilities in cotton fiber elongation. New Phytol. 2018;218:1061–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Wang J, Wang Z, Jiao Z, Du Q, Jia X, Niu J, Du R, Ji G, Duan P, Lv P, Cao J. Integrating transcriptome and physiological analyses to elucidate the molecular responses of sorghum to fluxofenim and metolachlor herbicide. Pestic Biochem Physiol. 2023:105692

  • Jiao Z, Shi Y, Wang J, Wang Z, Zhang X, Jia X, Du Q, Niu J, Liu B, Du R, Ji G, Cao J, Lv P. Integration of transcriptome and metabolome analyses reveals sorghum roots responding to cadmium stress via regulation of the flavonoid biosynthesis pathway. Entrance Plant Sci. 2023;14:1144265.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuura H, Takeishi S, Kiatoka N, Sato C, Sueda Okay, Masuta C, Nabeta Okay. Transportation of de novo synthesized jasmonoyl isoleucine in tomato. Phytochemistry. 2012;83:25–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan M, Sheng Y, Bao J, Wu W, Nie G, Wang L, Cao J. AaMYC3 bridges the regulation of glandular trichome density and artemisinin biosynthesis in Artemisia annua. Plant Biotechnol J. 2024.

  • Cui W, Chen Z, Shangguan X, Li T, Wang L, Xue X, Cao J. TRY intron2 decided its expression in inflorescence activated by SPL9 and MADS-box genes in Arabidopsis. Plant Sci. 2022;321:111311.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shangguan X, Yang Q, Wu X, Cao J. Operate evaluation of a cotton R2R3 MYB transcription issue GhMYB3 in regulating plant trichome improvement. Plant Biol. 2021;23:1118–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang CC, Li PB, Cao JF, Zheng ZS, Huang JQ, Zhang XF, Shangguan XX, Wang LJ, Chen ZW. Complete identification and expression evaluation of CRY gene household in Gossypium. BMC genomics. 2022;23.

  • De Vos RCH, Moco S, Lommen A, Keurentjes JJB, Bino RJ, Corridor RD. Untargeted large-scale plant metabolomics utilizing liquid chromatography coupled to mass spectrometry. Nat Protoc. 2007;2:778–91.

    Article 
    PubMed 

    Google Scholar
     

  • Theodoridis G, Gika HG, Wilson ID. LC-MS-based methodology for international metabolite profiling in metabonomics/metabolomics. TRAC Traits Anal Chem. 2008;27:251–60.

    Article 
    CAS 

    Google Scholar
     

  • Yuan M, Breitkopf SB, Yang X, Asara JM. A constructive/unfavourable ion–switching, focused mass spectrometry–based mostly metabolomics platform for bodily fluids, cells, and contemporary and glued tissue. Nat Protoc. 2012;7:872–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M. Towards understanding the origin and evolution of mobile organisms. Protein Sci. 2019;28:1947–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acharya P, Jayaprakasha GK, Semper J, Patil BS. 1H nuclear magnetic resonance and liquid chromatography coupled with mass spectrometry-based metabolomics reveal enhancement of growth-promoting metabolites in onion seedlings handled with green-synthesized nanomaterials. J Agr Meals Chem. 2020;68:13206–20.

    Article 
    CAS 

    Google Scholar
     

  • Muzammil S, Ashraf A, Siddique MH, Aslam B, Rasul I, Abbas R, Afzal M, Faisal M, Hayat S. A overview on toxicity of nanomaterials in agriculture: present state of affairs and future prospects. Sci Prog. 2023;106:00368504231221672.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adeleke BS, Akinola SA, Adedayo AA, Glick BR, Babalola OO. Synergistic relationship of endophyte-nanomaterials to alleviate abiotic stress in crops. Entrance Environ Sci. 2022;10.

  • Wang J, Wu H, Wang Y, Ye W, Kong X, Yin Z. Small particles, huge results: how nanoparticles can improve plant development in favorable and harsh situations. J Integr Plant Biol n/a; 2024.

  • Ali S, Mehmood A, Khan N. Uptake, translocation, and penalties of nanomaterials on plant development and stress adaptation. J Nanomater. 2021;6677616.

  • Feghhenabi F, Hadi H, Khodaverdiloo H, van Genuchten MT. Seed priming alleviated salinity stress throughout germination and emergence of wheat (Triticum aestivum L). Agric Water Handle. 2020;231:106022.

    Article 

    Google Scholar
     

  • Silva PO, Medina EF, Barros RS, Ribeiro DM. Germination of salt-stressed seeds as associated to the ethylene biosynthesis skill in three Stylosanthes species. J Plant Physiol. 2014;171:14–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Music Z, Zhao F, Chu L, Lin H, Xiao Y, Fang Z, Wang X, Dong J, Lyu X, Yu D, Liu B, Gai J, Xu D. The GmSTF1/2-GmBBX4 unfavourable suggestions loop acts downstream of blue-light photoreceptors to control isoflavonoid biosynthesis in soybean. Plant Commun. 2024;5.

  • Veitch NC. Isoflavonoids of the leguminosae. Nat Prod Rep. 2013;30:988–1027.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang P, Du H, Wang J, Pu Y, Yang C, Yan R, Yang H, Cheng H, Yu D. Multiplex CRISPR/Cas9-mediated metabolic engineering will increase soya bean isoflavone content material and resistance to soya bean mosaic virus. Plant Biotechnol J. 2020;18:1384–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bian X, Li W, Niu C, Wei W, Hu Y, Han J, Lu X, Tao J, Jin M, Qin H, Zhou B, Zhang W, Ma B, Wang G, Yu D, Lai Y, Chen S, Zhang J. A category B warmth shock issue chosen for throughout soybean domestication contributes to salt tolerance by selling flavonoid biosynthesis. New Phytol. 2020;225:268–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carr NF, Boaretto RM, Mattos D. Espresso seedlings development beneath various NO3:NH4+ ratio: penalties for nitrogen metabolism, amino acids profile, and regulation of plasma membrane H+-ATPase. Plant Physiol Biochem. 2020;154:11–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorissen SHM, Crombag JJR, Senden JMG, Waterval WAH, Bierau J, Verdijk LB, van Loon LJC. Protein content material and amino acid composition of commercially accessible plant-based protein isolates. Amino Acids. 2018;50:1685–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wani AS, Ahmad A, Hayat S, Tahir I. Epibrassinolide and proline alleviate the photosynthetic and yield inhibition beneath salt stress by appearing on antioxidant system in mustard. Plant Physiol Biochem. 2019;135:385–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batista-Silva W, Heinemann B, Rugen N, Nunes-Nesi A, Araújo WL, Braun H-P, Hildebrandt TM. The position of amino acid metabolism throughout abiotic stress launch. Plant Cell Environ. 2019;42:1630–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang M, Jiang J, Li S, Li M, Tan Y, Music S, Shu Q, Huang J. Glutamate alleviates cadmium toxicity in rice by way of suppressing cadmium uptake and translocation. J Hazard Mater. 2020;384:121319.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature. 2013;500:422–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forde BG. Glutamate signalling in roots. J Exp Bot. 2014;65:779–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehta P, Jajoo A, Mathur S, Bharti S. Chlorophyll a fluorescence examine revealing results of excessive salt stress on Photosystem II in wheat leaves. Plant Physiol Biochem. 2010;48:16–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khatri Okay, Rathore MS. Salt and osmotic stress-induced modifications in physio-chemical responses, PSII photochemistry and chlorophyll a fluorescence in peanut. Plant Stress. 2022;3:100063.

    Article 
    CAS 

    Google Scholar
     

  • Zhao L, Huokko T, Wilson S, Simpson DM, Wang Q, Ruban AV, Mullineaux CW, Zhang Y, Liu L. Structural variability, coordination and adaptation of a local photosynthetic equipment. Nat Vegetation. 2020;6:869–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ. Chlorophyll a fluorescence as a instrument to watch physiological standing of crops beneath abiotic stress situations. Acta Physiol Plant. 2016;38:102.

    Article 

    Google Scholar
     

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P. The position of gibberellin signalling in plant responses to abiotic stress. J Exp Bot. 2014;217:67–75.

    Article 
    CAS 

    Google Scholar
     

  • Šimura J, Antoniadi I, Široká J, Tarkowská De, Strnad M, Ljung Okay, Novák O. Plant hormonomics: a number of phytohormone profiling by focused metabolomics. Plant Physiol. 2018;177:476–89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan Z, Wang J, Wang F, Xie C, Lv B, Yu Z, Dai S, Liu X, Xia G, Tian H, Li C, Ding Z. MPK3/6-induced degradation of ARR1/10/12 promotes salt tolerance in Arabidopsis. EMBO Rep. 2021;22:e52457.

  • Castro-Camba R, Sánchez C, Vidal N, Vielba JM. Interactions of gibberellins with phytohormones and their position in stress responses. Horticulturae. 2022;8.

  • Yin P, Liang X, Zhao H, Xu Z, Chen L, Yang X, Qin F, Zhang J, Jiang C. Cytokinin signaling promotes salt tolerance by modulating shoot chloride exclusion in maize. Mol Plant. 2023;16:1031–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su Y, Zhou X, Meng H, Xia T, Liu H, Rolshausen P, Roper C, McLean JE, Zhang Y, Keller AA, Jassby D. Value–profit evaluation of nanofertilizers and nanopesticides emphasizes the necessity to enhance the effectivity of nanoformulations for widescale adoption. Nat Meals. 2022;3:1020–30.

    Article 
    PubMed 

    Google Scholar
     

  • Kah M, Kookana RS, Gogos A, Bucheli TD. A vital analysis of nanopesticides and nanofertilizers in opposition to their typical analogues. Nat Nanotechnol. 2018;13:677–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang C, Xia T, Niu J, Yang Y, Lin S, Wang X, Yang G, Mao L, Xing B. Transformation of 14C-labeled graphene to 14CO2 within the shoots of a rice plant. Angew Chem Int Ed. 2018;57:9759–63.

    Article 
    CAS 

    Google Scholar
     

  • Lalwani G, Xing W, Sitharaman B. Enzymatic degradation of oxidized and diminished graphene nanoribbons by lignin peroxidase. J Mater Chem B. 2014;2:6354–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *