Non-viral approaches in CAR-NK cell engineering: connecting pure killer cell biology and gene supply | Journal of Nanobiotechnology

  • Karakostas P, Panoskaltsis N, Mantalaris A, Georgiadis MC. Optimization of CAR T-cell therapies provide chains. Comput Chem Eng. 2020;139: 106913. https://doi.org/10.1016/j.compchemeng.2020.106913.

    Article 

    Google Scholar
     

  • Luginbuehl V, Abraham E, Kovar Okay, Flaaten R, Müller AMS. Higher by design: what to anticipate from novel CAR-engineered cell therapies? Biotechnol Adv. 2022;58: 107917. https://doi.org/10.1016/j.biotechadv.2022.107917.

    Article 
    PubMed 

    Google Scholar
     

  • Miliotou AN, Papadopoulou LC. CAR T-cell remedy: a brand new period in most cancers immunotherapy. Curr Pharm Biotechnol. 2018;19:5–18. https://doi.org/10.2174/1389201019666180418095526.

    Article 
    PubMed 

    Google Scholar
     

  • Sharma A, Singh V, Deol A. Epidemiology and predictors of 30-day readmission in CAR-T cell remedy recipients. Transplant Cell Ther. 2023;29(108):e1-108.e7. https://doi.org/10.1016/j.jtct.2022.11.004.

    Article 

    Google Scholar
     

  • Lin C-Y, Gobius I, Souza-Fonseca-Guimaraes F. Pure killer cell engineering—a brand new hope for most cancers immunotherapy. Semin Hematol. 2020;57:194–200. https://doi.org/10.1053/j.seminhematol.2020.10.002.

    Article 
    PubMed 

    Google Scholar
     

  • The Meals and Drug Administration, Authorized mobile and gene remedy merchandise, n.d. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products. Accessed 5 Could 2023.

  • Boettcher M, Joechner A, Li Z, Yang SF, Schlegel P. Improvement of CAR T cell remedy in youngsters—a complete overview. J Clin Med. 2022. https://doi.org/10.3390/jcm11082158.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srivastava S, Riddell SR. CAR T cell remedy: challenges to bench-to-bedside efficacy. J Immunol. 2018;200:459–68.

    Article 
    PubMed 

    Google Scholar
     

  • Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran Okay, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M. CD19-targeted T cells quickly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5:177ra38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porter DL, Hwang W-T, Frey NV, Lacey SF, Shaw PA, Loren AW, Bagg A, Marcucci KT, Shen A, Gonzalez V, Ambrose D, Grupp SA, Chew A, Zheng Z, Milone MC, Levine BL, Melenhorst JJ, June CH. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory power lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in youngsters and younger adults: A section 1 dose-escalation trial. The Lancet. 2015;385:517–28. https://doi.org/10.1016/S0140-6736(14)61403-3.

    Article 

    Google Scholar
     

  • U.S. Meals and Drug Administration, Authorized Mobile and Gene Therpay Merchandise: Kymriah (tisagenlecleucel), 2022. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel. Accessed 2 Nov 2023.

  • Zettler M, Nabhan C. Complete prices of chimeric antigen receptor T-cell immunotherapy. JAMA Oncol. 2018;4:993–4. https://doi.org/10.1001/jamaoncol.2018.0610.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • U.S. Meals and Drug Administration, Authorized Mobile and Gene Remedy Merchandise: Yescarta (axicabtagene ciloleucel), 2022. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/yescarta-axicabtagene-ciloleucel. Accessed 2 Nov 2023.

  • U.S. Meals and Drug Administration, Authorized Mobile and Gene Remedy Merchandise: Tecartus (brexucabtagene autoleucel), 2022. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/tecartus-brexucabtagene-autoleucel. Accessed 2 Nov 2023.

  • Conduent Medical Providers, New Drug Truth Blast: Abecma, 2021.

  • U.S. Meals and Drug Administration, Authorized Mobile and Gene Remedy Merchandise: Abecma (idecabtagene vicleucel), 2021. https://www.fda.gov/vaccines-blood-biologics/abecma-idecabtagene-vicleucel. Accessed 2 Nov 2023.

  • U.S. Meals and Drug Administration, Authorized Mobile and Gene Remedy Merchandise: Breyanzi (lisocabtagene maraleucel), 2022. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/breyanzi-lisocabtagene-maraleucel. Accessed 2 Nov 2023.

  • U.S. Meals and Drug Administration, Vaccines, Blood and Biologics: Carvykti, (2023). https://www.fda.gov/vaccines-blood-biologics/carvykti. Accessed 2 Nov 2023.

  • Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, Qayed M, De Moerloose B, Hiramatsu H, Schlis Okay, Davis KL, Martin PL, Nemecek ER, Yanik GA, Peters C, Baruchel A, Boissel N, Mechinaud F, Balduzzi A, Krueger J, June CH, Levine BL, Wooden P, Taran T, Leung M, Mueller KT, Zhang Y, Sen Okay, Lebwohl D, Pulsipher MA, Grupp SA. Tisagenlecleucel in youngsters and younger adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48. https://doi.org/10.1056/nejmoa1709866.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wrona E, Borowiec M, Potemski P. CAR-NK cells within the therapy of stable tumors. Int J Mol Sci. 2021;22:1–19. https://doi.org/10.3390/ijms22115899.

    Article 

    Google Scholar
     

  • Pan Okay, Farrukh H, Chittepu VCSR, Xu H, XianPan C, Zhu Z. CAR race to most cancers immunotherapy: from CAR T CAR NK to CAR macrophage remedy. J Exp Clin Most cancers Res. 2022;41:1–21. https://doi.org/10.1186/s13046-022-02327-z.

    Article 

    Google Scholar
     

  • Stabile H, Fionda C, Gismondi A, Santoni A. Function of distinct pure killer cell subsets in anticancer response. Entrance Immunol. 2017;8:1–8. https://doi.org/10.3389/fimmu.2017.00293.

    Article 

    Google Scholar
     

  • Lee DA. Mobile remedy: adoptive immunotherapy with expanded pure killer cells. Immunol Rev. 2019;290:85–99. https://doi.org/10.1111/imr.12793.

    Article 
    PubMed 

    Google Scholar
     

  • Biassoni R, Malnati MS. Human pure killer receptors, co-receptors, and their ligands. Curr Protoc Immunol. 2018. https://doi.org/10.1002/cpim.47.

    Article 
    PubMed 

    Google Scholar
     

  • Wensveen FM, Jelenčić V, Polić B. NKG2D: a grasp regulator of immune cell responsiveness. Entrance Immunol. 2018. https://doi.org/10.3389/fimmu.2018.00441.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pende D, Falco M, Vitale M, Cantoni C, Vitale C, Munari E, Bertaina A, Moretta F, Del Zotto G, Pietra G, Mingari MC, Locatelli F, Moretta L. Killer Ig-like receptors (KIRs): their function in NK cell modulation and developments resulting in their medical exploitation. Entrance Immunol. 2019. https://doi.org/10.3389/fimmu.2019.01179.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: a promising mobile immunotherapy for most cancers. EBioMedicine. 2020. https://doi.org/10.1016/j.ebiom.2020.102975.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cherif B, Triki H, Charfi S, Bouzidi L, Ben Kridis W, Khanfir A, Chaabane Okay, Sellami-Boudawara T, Rebai A. Immune checkpoint molecules B7–H6 and PD-L1 co-pattern the tumor inflammatory microenvironment in human breast most cancers. Sci Rep. 2021;11:1–13. https://doi.org/10.1038/s41598-021-87216-9.

    Article 

    Google Scholar
     

  • Buller CW, Mathew PA, Mathew SO. Roles of nk cell receptors 2b4 (Cd244), cs1 (cd319), and llt1 (clec2d) in most cancers. Cancers (Basel). 2020;12:1–15. https://doi.org/10.3390/cancers12071755.

    Article 

    Google Scholar
     

  • Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S. Innate or adaptive immunity? The instance of pure killer cells. Science. 1979;331(2011):44–9. https://doi.org/10.1126/science.1198687.

    Article 

    Google Scholar
     

  • Wang F, Hou H, Wu S, Tang Q, Liu W, Huang M, Yin B, Huang J, Mao L, Lu Y, Solar Z. TIGIT expression ranges on human NK cells correlate with practical heterogeneity amongst wholesome people. Eur J Immunol. 2015;45:2886–97. https://doi.org/10.1002/eji.201545480.

    Article 
    PubMed 

    Google Scholar
     

  • Müller T, Uherek C, Maki G, Chow KU, Schimpf A, Klingemann HG, Tonn T, Wels WS. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic exercise of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Most cancers Immunol Immunother. 2008;57:411–23. https://doi.org/10.1007/s00262-007-0383-3.

    Article 
    PubMed 

    Google Scholar
     

  • Screpanti V, Wallin RPA, Grandien A, Ljunggren HG. Affect of FASL-induced apoptosis within the elimination of tumor cells by NK cells. Mol Immunol. 2005;42:495–9. https://doi.org/10.1016/j.molimm.2004.07.033.

    Article 
    PubMed 

    Google Scholar
     

  • Prager I, Watzl C. Mechanisms of pure killer cell-mediated mobile cytotoxicity. J Leukoc Biol. 2019;105:1319–29. https://doi.org/10.1002/JLB.MR0718-269R.

    Article 
    PubMed 

    Google Scholar
     

  • Wang R, Jaw JJ, Stutzman NC, Zou Z, Solar PD. Pure killer cell-produced IFN-γ and TNF-α induce goal cell cytolysis by up-regulation of ICAM-1. J Leukoc Biol. 2012;91:299–309. https://doi.org/10.1189/jlb.0611308.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fauriat C, Lengthy EO, Ljunggren HG, Bryceson YT. Regulation of human NK-cell cytokine and chemokine manufacturing by goal cell recognition. Blood. 2010;115:2167–76. https://doi.org/10.1182/blood-2009-08-238469.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capuano C, Pighi C, Battella S, De Federicis D, Galandrini R, Palmieri G. Harnessing CD16-mediated NK cell features to boost therapeutic efficacy of tumor-targeting mAbs. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13102500.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based most cancers immunotherapy: from primary biology to medical improvement. J Hematol Oncol. 2021. https://doi.org/10.1186/s13045-020-01014-w.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gust J, Ponce R, Liles WC, Backyard GA, Turtle CJ. Cytokines in CAR T cell-associated neurotoxicity. Entrance Immunol. 2020. https://doi.org/10.3389/fimmu.2020.577027.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klingemann H. Are pure killer cells superior CAR drivers? Oncoimmunology. 2014. https://doi.org/10.4161/onci.28147.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marin D, Li Y, Basar R, Rafei H, Daher M, Dou J, Mohanty V, Dede M, Nieto Y, Uprety N, Acharya S, Liu E, Wilson J, Banerjee P, Macapinlac HA, Ganesh C, Thall PF, Bassett R, Ammari M, Rao S, Cao Okay, Shanley M, Kaplan M, Hosing C, Kebriaei P, Nastoupil LJ, Flowers CR, Moseley SM, Lin P, Ang S, Popat UR, Qazilbash MH, Champlin RE, Chen Okay, Shpall EJ, Rezvani Okay. Security, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a section 1/2 trial. Nat Med. 2024. https://doi.org/10.1038/s41591-023-02785-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebrahimiyan H, Tamimi A, Shokoohian B, Minaei N, Memarnejadian A, Hossein-Khannazer N, Hassan M, Vosough M. Novel insights in CAR-NK cells past CAR-T cell know-how; promising benefits. Int Immunopharmacol. 2022. https://doi.org/10.1016/j.intimp.2022.108587.

    Article 
    PubMed 

    Google Scholar
     

  • Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L. Human NK cells: floor receptors, inhibitory checkpoints, and translational purposes. Cell Mol Immunol. 2019;16:430–41. https://doi.org/10.1038/s41423-019-0206-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang Y, Zhu Y, Kramer A, Chen Y, Li YR, Yang L. Graft-versus-host illness modulation by innate T cells. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24044084.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baghery Saghchy Khorasani A, Yousefi AM, Bashash D. CAR NK cell remedy in hematologic malignancies and stable tumors; obstacles and techniques to beat the challenges. Int Immunopharmacol. 2022;110:109041. https://doi.org/10.1016/j.intimp.2022.109041.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang C, Oberoi P, Oelsner S, Waldmann A, Lindner A, Tonn T, Wels WS. Chimeric antigen receptor-engineered NK-92 cells: an off-the-shelf mobile therapeutic for focused elimination of most cancers cells and induction of protecting antitumor immunity. Entrance Immunol. 2017. https://doi.org/10.3389/fimmu.2017.00533.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamers-Kok N, Panella D, Georgoudaki AM, Liu H, Özkazanc D, Kučerová L, Duru AD, Spanholtz J, Raimo M, Pure killer cells in medical improvement as non-engineered, engineered, and mixture therapies, J Hematol Oncol 2022. https://doi.org/10.1186/s13045-022-01382-5.

  • Klingemann H. Challenges of most cancers remedy with pure killer cells. Cytotherapy. 2015;17:245–9. https://doi.org/10.1016/j.jcyt.2014.09.007.

    Article 
    PubMed 

    Google Scholar
     

  • Vormittag P, Gunn R, Ghorashian S, Veraitch FS. A information to manufacturing CAR T cell therapies. Curr Opin Biotechnol. 2018;53:164–81. https://doi.org/10.1016/j.copbio.2018.01.025.

    Article 
    PubMed 

    Google Scholar
     

  • Klingemann H, Boissel L, Toneguzzo F. Pure killer cells for immunotherapy—benefits of the NK-92 cell line over blood NK cells. Entrance Immunol. 2016;7:1–7. https://doi.org/10.3389/fimmu.2016.00091.

    Article 

    Google Scholar
     

  • Zhang Y, Zhou W, Yang J, Yang J, Wang W. Chimeric antigen receptor engineered pure killer cells for most cancers remedy. Exp Hematol Oncol. 2023. https://doi.org/10.1186/s40164-023-00431-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kloess S, Kretschmer A, Stahl L, Fricke S, Koehl U. CAR-Expressing pure killer cells for most cancers retargeting. Transfus Med Hemother. 2019;46:4–13. https://doi.org/10.1159/000495771.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Okay, Wang L, Wang Y, Xiao L, Wei J, Hu Y, Wang D, Huang H. Reprogramming pure killers for most cancers remedy. Mol Ther. 2024. https://doi.org/10.1016/j.ymthe.2024.01.027.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morimoto T, Nakazawa T, Maeoka R, Nakagawa I, Tsujimura T, Matsuda R. Pure killer cell-based immunotherapy towards glioblastoma. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24032111.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, Nassif Kerbauy L, Overman B, Thall P, Kaplan M, Nandivada V, Kaur I, Nunez Cortes A, Cao Okay, Daher M, Hosing C, Cohen EN, Kebriaei P, Mehta R, Neelapu S, Nieto Y, Wang M, Wierda W, Keating M, Champlin R, Shpall EJ, Rezvani Okay. Use of CAR-transduced pure killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382:545–53. https://doi.org/10.1056/nejmoa1910607.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Hillmen P, Keating M, Montserrat E, Chiorazzi N, Stilgenbauer S, Rai KR, Byrd JC, Eichhorst B, Robak T, Seymour JF, Kipps TJ. Particular Report iwCLL pointers for prognosis, indications for therapy, response evaluation, and supportive administration of CLL. Blood. 2018;131:2745–60.

    Article 
    PubMed 

    Google Scholar
     

  • Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, Lister TA. Suggestions for preliminary analysis, staging, and response evaluation of hodgkin and non-hodgkin lymphoma: the lugano classification. J Clin Oncol. 2014;32:3059–67. https://doi.org/10.1200/JCO.2013.54.8800.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burger MC, Forster M-T, Romanski A, Straßheimer F, Macas J, Zeiner PS, Steidl E, Herkt S, Weber KJ, Schupp J, Lun JH, Strecker MI, Wlotzka Okay, Cakmak P, Opitz C, George R, Mildenberger IC, Nowakowska P, Zhang C, Röder J, Müller E, Ihrig Okay, Langen Okay-J, Rieger MA, Herrmann E, Bönig H, Harter PN, Reiss Y, Hattingen E, Rödel F, Plate KH, Tonn T, Senft C, Steinbach JP, Wels WS. Intracranial injection of NK cells engineered with a HER2-targeted chimeric antigen receptor in sufferers with recurrent glioblastoma. Neurol Oncol. 2023. https://doi.org/10.1093/neuonc/noad087/7155851.

    Article 

    Google Scholar
     

  • Wu X, Matosevic S. Gene-edited and CAR-NK cells: alternatives and challenges with engineering of NK cells for immunotherapy. Mol Ther Oncolytics. 2022;27:224–38. https://doi.org/10.1016/j.omto.2022.10.011.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Meng Y, Feng X, Han Z. CAR-NK cells for most cancers immunotherapy: from bench to bedside. Biomark Res. 2022;10:1–19. https://doi.org/10.1186/s40364-022-00364-6.

    Article 

    Google Scholar
     

  • Wang Y, Xu H, Zheng X, Wei H, Solar R, Tian Z. Excessive expression of NKG2A/CD94 and low expression of granzyme B are related to lowered wire blood NK cell exercise. Cell Mol Immunol. 2007;4:377–82.

    PubMed 

    Google Scholar
     

  • Mehta RS, Shpall EJ, Rezvani Okay. Wire blood as a supply of pure killer cells. Entrance Med (Lausanne). 2015;2:1–10. https://doi.org/10.3389/fmed.2015.00093.

    Article 

    Google Scholar
     

  • Heipertz EL, Zynda ER, Stav-Noraas TE, Hungler AD, Boucher SE, Kaur N, Vemuri MC. Present views on “Off-The-Shelf” allogeneic NK and CAR-NK cell therapies. Entrance Immunol. 2021. https://doi.org/10.3389/fimmu.2021.732135.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maia A, Tarannum M, Lérias JR, Piccinelli S, Borrego LM, Maeurer M, Romee R, Castillo-Martin M. Constructing a greater protection: increasing and enhancing pure killer cells for adoptive cell remedy. Cells. 2024. https://doi.org/10.3390/cells13050451.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lapteva N, Parihar R, Rollins LA, Gee AP, Rooney CM. Massive-scale tradition and genetic modification of human pure killer cells for mobile remedy. In: Somanchi SS, editor. Pure killer cells: strategies and protocols. Springer: Strategies in Molecular Biology; 2016. p. 195–202 (10.1007/978-1-4939-3684-7_16).

    Chapter 

    Google Scholar
     

  • Berjis A, Muthumani D, Aguilar OA, Pomp O, Johnson O, Finck AV, Engel NW, Chen L, Plachta N, Scholler J, Lanier LL, June CH, Sheppard NC. Pretreatment with IL-15 and IL-18 rescues pure killer cells from granzyme B-mediated apoptosis after cryopreservation. Nat Commun. 2024. https://doi.org/10.1038/s41467-024-47574-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlsten M, Childs RW. Genetic manipulation of NK cells for most cancers immunotherapy: methods and medical implications. Entrance Immunol. 2015. https://doi.org/10.3389/fimmu.2015.00266.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurney M, Kundu S, Pandey S, O’Dwyer M. Feeder cells on the interface of pure killer cell activation, growth and gene modifying. Entrance Immunol. 2022. https://doi.org/10.3389/fimmu.2022.802906.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pomeroy EJ, Lahr WS, Chang JW, Krueger J, Wick BJ, Slipek NJ, Skeate JG, Webber BR, Moriarity BS. Non-viral engineering of CAR-NK and CAR-T cells utilizing the tcbuster transposon system. BioRxiv. 2021;12:1–35.


    Google Scholar
     

  • Gurney M, O’Reilly E, Corcoran S, Brophy S, Krawczyk J, Otto NM, Hermanson DL, Childs RW, Szegezdi E, O’Dwyer ME. Concurrent transposon engineering and CRISPR/Cas9 genome modifying of main CLL-1 chimeric antigen receptor–pure killer cells. Cytotherapy. 2022;24:1087–94. https://doi.org/10.1016/j.jcyt.2022.07.008.

    Article 
    PubMed 

    Google Scholar
     

  • Destiny Therapeutics, Destiny Therapeutics Press Launch December 2021, 2021. https://ir.fatetherapeutics.com/news-releases/news-release-details/fate-therapeutics-showcases-positive-interim-phase-1-data-ft596. Accessed 18 Could 2023.

  • Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-derived pure killer cells engineered with chimeric antigen receptors improve anti-tumor exercise. Cell Stem Cell. 2018;23:181-192.e5. https://doi.org/10.1016/j.stem.2018.06.002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cichocki F, Van Der Stegen SJC, Miller JS. Engineered and banked iPSCs for superior NK-and T-cell immunotherapies. Blood. 2023;141:846–55.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu H, Kaufman DS. An improved methodology to provide clinical-scale pure killer cells from human pluripotent stem cells. In: Kaneko S, editor. In vitro differentiation of t-cells strategies and protocols strategies in molecular biology 2048. New York: Humana; 2019. (10.1007/978-1-4939-9728-2_12).


    Google Scholar
     

  • Maddineni S, Silberstein JL, Sunwoo JB. Rising NK cell therapies for most cancers and the promise of subsequent technology engineering of iPSC-derived NK cells. J Immunother Most cancers. 2022. https://doi.org/10.1136/jitc-2022-004693.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doss MX, Sachinidis A. Present challenges of iPSC-based illness modeling and therapeutic implications. Cells. 2019. https://doi.org/10.3390/cells8050403.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matosevic S. Viral and nonviral engineering of pure killer cells as rising adoptive most cancers immunotherapies. J Immunol Res. 2018. https://doi.org/10.1155/2018/4054815.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suerth JD, Morgan MA, Kloess S, Heckl D, Neudörfl C, Falk CS, Koehl U, Schambach A. Environment friendly technology of gene-modified human pure killer cells through alpharetroviral vectors. J Mol Med. 2016;94:83–93. https://doi.org/10.1007/s00109-015-1327-6.

    Article 
    PubMed 

    Google Scholar
     

  • Harnack U, Johnen H, Pecher G. Pure killer cell line YT exerts cytotoxicity towards CD86+ myeloma cells. Anticancer Res. 2011;31:475–9.

    PubMed 

    Google Scholar
     

  • Subrakova VG, Kulemzin SV, Belovezhets TN, Chikaev AN, Chikaev NA, Koval OA, Gorchakov AA, Taranin AV. Shp-2 gene knockout upregulates CAR-driven cytotoxicity of YT NK cells. Vavilovskii Zhurnal Genet Selektsii. 2020;24:80–6. https://doi.org/10.18699/VJ20.598.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Navarrete-Galvan L, Guglielmo M, Cruz Amaya J, Smith-Gagen J, Lombardi VC, Merica R, Hudig D. Optimizing NK-92 serial killers: gamma irradiation, CD95/Fas-ligation, and NK or LAK assault restrict cytotoxic efficacy. J Transl Med. 2022;20:1–13. https://doi.org/10.1186/s12967-022-03350-6.

    Article 

    Google Scholar
     

  • Li H, Track W, Li Z, Zhang M. Preclinical and medical research of CAR-NK-cell therapies for malignancies. Entrance Immunol. 2022. https://doi.org/10.3389/fimmu.2022.992232.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maki G, Martin JA. Elements regulating the cytotoxic exercise of the human pure killer cell line nk-92. J Hematother Stem Cell Res. 2001;10:369–83.

    Article 
    PubMed 

    Google Scholar
     

  • Gong J, Maki G, Klingemann H. Characterization of a human cell line (NK-92) with phenotypical and practical traits of activated pure killer cells. Leukemia. 1994;8:652–8.

    PubMed 

    Google Scholar
     

  • Tam YK, Maki G, Miyagawa B, Hennemann B, Tonn T, Klingemann HG. Characterisation of genetically altered, interleukin 2-independent pure killer cell traces appropriate for adoptive mobile remedy. Hum Gene Ther. 1999;10:1359–73. https://doi.org/10.1089/10430349950018030.

    Article 
    PubMed 

    Google Scholar
     

  • Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, Yin J, You F, Zhu M, Shen W, Chen G, Zhu X, Wu D, Yu J. First-in-man medical trial of CAR NK-92 cells: security take a look at of CD33-CAR NK-92 cells in sufferers with relapsed and refractory acute myeloid leukemia. Am J Most cancers Res. 2018;8:1083–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jochems C, Hodge JW, Fantini M, Fujii R, Mauric Morillon YI, Greiner JW, Padget MR, Tritsch SR, Yok Tsang Okay, Campbell KS, Klingemann H, Boissel L, Rabizadeh S, Quickly-Shiong P, Schlom J. An NK cell line (haNK) expressing excessive ranges of granzyme and engineered to precise the excessive affinity CD16 allele. Oncotarget. 2016;7:86359–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boissel L, Betancur M, Lu W, Krause D, Van Etten R, Wels W, Klingemann H. Retargeting NK-92 cells by way of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent mobile cytotoxicity. Oncoimmunology. 2013;2: e26527. https://doi.org/10.4161/onci.26527.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robbins Y, Greene S, Friedman J, Clavijo PE, Van Waes C, Fabian KP, Padget MR, Sater HA, Lee JH, Quickly-Shiong P, Gulley J, Schlom J, Hodge JW, Allen CT. Tumor management through concentrating on pd-l1 with chimeric antigen receptor modified nk cells. Elife. 2020;9:1–18. https://doi.org/10.7554/eLife.54854.

    Article 

    Google Scholar
     

  • Suck G, Odendahl M, Nowakowska P, Seidl C, Wels WS, Klingemann HG, Tonn T. NK-92: an ‘off-the-shelf therapeutic’ for adoptive pure killer cell-based most cancers immunotherapy. Most cancers Immunol Immunother. 2016;65:485–92. https://doi.org/10.1007/s00262-015-1761-x.

    Article 
    PubMed 

    Google Scholar
     

  • ImmunityBio, Press Launch: ImmunityBio Proclaims Outcomes of Part 2 Metastatic Pancreatic Most cancers Trial at ASCO GI With Median Total Survival of 6.3 Months in Sufferers With Third-Line Illness, Extra Than Doubling Historic Survival, (2022). https://ir.immunitybio.com/news-releases/news-release-details/immunitybio-announces-results-phase-2-metastatic-pancreatic?field_nir_news_date_value[min]. Accessed 18 Could 2023.

  • Suck G, Department DR, Smyth MJ, Miller RG, Vergidis J, Fahim S, Keating A. KHYG-1, a mannequin for the examine of enhanced pure killer cell cytotoxicity. Exp Hematol. 2005;33:1160–71. https://doi.org/10.1016/j.exphem.2005.06.024.

    Article 
    PubMed 

    Google Scholar
     

  • Stikvoort A, Van Der Schans J, Sarkar S, Poels R, Ruiter R, Naik J, Yuan H, De Bruijn JD, Van De Donk NWCJ, Zweegman S, Themeli M, Groen R, O’Dwyer M, Mutis T. CD38-specific chimeric antigen receptor expressing pure killer KHYG-1 cells: a proof of idea for an “Off the Shelf” remedy for a number of myeloma. Hemasphere. 2021. https://doi.org/10.1097/HS9.0000000000000596.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, Suttorp M, Seifried E, Ottmann OG, Bug G. Remedy of sufferers with superior most cancers with the pure killer cell line NK-92. Cytotherapy. 2013;15:1563–70. https://doi.org/10.1016/j.jcyt.2013.06.017.

    Article 
    PubMed 

    Google Scholar
     

  • Gong Y, KleinWolterink RGJ, Wang J, Bos GMJ, Germeraad WTV. Chimeric antigen receptor pure killer (CAR-NK) cell design and engineering for most cancers remedy. J Hematol Oncol. 2021. https://doi.org/10.1186/s13045-021-01083-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altvater B, Landmeier S, Pscherer S, Temme J, Schweer Okay, Kailayangiri S, Campana D, Juergens H, Pule M, Rossig C. 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates pure killer cell activation to leukemia and neuroblastoma cells. Clin Most cancers Res. 2009;15:4857–66. https://doi.org/10.1158/1078-0432.CCR-08-2810.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang YH, Connolly J, Shimasaki N, Mimura Okay, Kono Okay, Campana D. A chimeric receptor with NKG2D specificity enhances pure killer cell activation and killing of tumor cells. Most cancers Res. 2013;73:1777–86. https://doi.org/10.1158/0008-5472.CAN-12-3558.

    Article 
    PubMed 

    Google Scholar
     

  • Xiao L, Cen D, Gan H, Solar Y, Huang N, Xiong H, Jin Q, Su L, Liu X, Wang Okay, Yan G, Dong T, Wu S, Zhou P, Zhang J, Liang W, Ren J, Teng Y, Chen C, Xu XH. Adoptive switch of NKG2D CAR mRNA-engineered pure killer cells in colorectal most cancers sufferers. Mol Ther. 2019;27:1114–25. https://doi.org/10.1016/j.ymthe.2019.03.011.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agrawal P, Ingle NP, Boyle WS, Ward E, Tolar J, Dorfman KD, Reineke TM. Quick, environment friendly, and mild transfection of human adherent cells in suspension. ACS Appl Mater Interfaces. 2016;8:8870–4. https://doi.org/10.1021/acsami.6b01702.

    Article 
    PubMed 

    Google Scholar
     

  • Costa D, Briscoe WH, Queiroz J. Polyethylenimine coated plasmid DNA-surfactant complexes as potential gene supply techniques. Colloids Surf B Biointerfaces. 2015;133:156–63. https://doi.org/10.1016/j.colsurfb.2015.06.005.

    Article 
    PubMed 

    Google Scholar
     

  • Carvalho M, Sepodes B, Martins AP. Regulatory and scientific developments in gene remedy: State-of-the-art of medical purposes and of the supporting European regulatory framework. Entrance Med (Lausanne). 2017. https://doi.org/10.3389/fmed.2017.00182.

    Article 
    PubMed 

    Google Scholar
     

  • Bari R, Granzin M, Tsang KS, Roy A, Krueger W, Orentas R, Schneider D, Pfeifer R, Moeker N, Verhoeyen E, Dropulic B, Leung W. A Distinct subset of extremely proliferative and lentiviral vector (LV)-transducible NK cells outline a readily engineered subset for adoptive mobile remedy. Entrance Immunol. 2019. https://doi.org/10.3389/fimmu.2019.02784.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robbins GM, Wang M, Pomeroy EJ, Moriarity BS. Nonviral genome engineering of pure killer cells. Stem Cell Res Ther. 2021;12:350.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colamartino ABL, Lemieux W, Bifsha P, Nicoletti S, Chakravarti N, Sanz J, Roméro H, Selleri S, Béland Okay, Guiot M, Tremblay-Laganière C, Dicaire R, Barreiro L, Lee DA, Verhoeyen E, Haddad E. Environment friendly and sturdy NK-Cell transduction with baboon envelope pseudotyped lentivector. Entrance Immunol. 2019;10:1–7. https://doi.org/10.3389/fimmu.2019.02873.

    Article 

    Google Scholar
     

  • McErlean EM, McCrudden CM, McCarthy HO. Supply of nucleic acids for most cancers gene remedy: overcoming extra- and intra-cellular obstacles. Ther Deliv. 2016. https://doi.org/10.4155/tde-2016-0049.

    Article 
    PubMed 

    Google Scholar
     

  • McErlean EM, McCrudden CM, McCarthy HO, Multifunctional supply techniques for most cancers gene remedy, In: Doaa Hashad (Ed.), Gene remedy: rules and challenges, InTech, 2015: pp. 57–104. https://doi.org/10.5772/61297.

  • Silva G, Rodrigues AF, Ferreira S, Matos C, Eleutério RP, Marques G, Kucheryava Okay, Lemos AR, Sousa PMF, Castro R, Barbas A, Simão D, Alves PM. Novel scFv towards Notch Ligand JAG1 appropriate for improvement of cell therapies towards JAG1-positive tumors. Biomolecules. 2023. https://doi.org/10.3390/biom13030459.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tipanee J, VandenDriessche T, Chuah MK. Transposons: shifting ahead from preclinical research to medical trials. Hum Gene Ther. 2017;28:1087–104. https://doi.org/10.1089/hum.2017.128.

    Article 
    PubMed 

    Google Scholar
     

  • Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Modern transposon instruments: a evaluation and information by mechanisms and purposes of sleeping magnificence, piggybac and tol2 for genome engineering. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22105084.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hudecek M, Ivics Z. Non-viral therapeutic cell engineering with the Sleeping Magnificence transposon system. Curr Opin Genet Dev. 2018;52:100–8. https://doi.org/10.1016/j.gde.2018.06.003.

    Article 
    PubMed 

    Google Scholar
     

  • Elmas E, Saljoughian N, de Souza Fernandes Pereira M, Tullius BP, Sorathia Okay, Nakkula RJ, Lee DA, Naeimi Kararoudi M. CRISPR gene modifying of human main NK and T cells for most cancers immunotherapy. Entrance Oncol. 2022. https://doi.org/10.3389/fonc.2022.834002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang RS, Shih HA, Lai MC, Chang YJ, Lin S. Enhanced NK-92 cytotoxicity by CRISPR genome engineering utilizing Cas9 ribonucleoproteins. Entrance Immunol. 2020;11:1–16. https://doi.org/10.3389/fimmu.2020.01008.

    Article 

    Google Scholar
     

  • Zhu H, Blum RH, Bernareggi D, Ask EH, Wu Z, Hoel HJ, Meng Z, Wu C, Guan KL, Malmberg KJ, Kaufman DS. Metabolic reprograming through deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor exercise. Cell Stem Cell. 2020;27:224-237.e6. https://doi.org/10.1016/j.stem.2020.05.008.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daher M, Basar R, Gokdemir E, Baran N, Uprety N, Nunez Cortes AK, Mendt M, Kerbauy LN, Banerjee PP, Shanley M, Imahashi N, Li L, Lim FLWI, Fathi M, Rezvan A, Mohanty V, Shen Y, Shaim H, Lu J, Ozcan G, Ensley E, Kaplan M, Nandivada V, Bdiwi M, Acharya S, Xi Y, Wan X, Mak D, Liu E, Jiang XR, Ang S, Muniz-Feliciano L, Li Y, Wang J, Kordasti S, Petrov N, Varadarajan N, Marin D, Brunetti L, Skinner RJ, Lyu S, Silva L, Turk R, Schubert MS, Rettig GR, McNeill MS, Kurgan G, Behlke MA, Li H, Fowlkes NW, Chen Okay, Konopleva M, Champlin RE, Shpall EJ, Rezvani Okay. Focusing on a cytokine checkpoint enhances the health of armored wire blood CAR-NK cells. Blood. 2021;137:624–36. https://doi.org/10.1182/blood.2020007748.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bishop DC, Clancy LE, Simms R, Burgess J, Mathew G, Moezzi L, Road JA, Sutrave G, Atkins E, McGuire HM, Gloss BS, Lee Okay, Jiang W, Maddock Okay, McCaughan G, Avdic S, Antonenas V, O’Brien TA, Shaw PJ, Irving DO, Gottlieb DJ, Blyth E, Micklethwaite KP. Improvement of CAR T-cell lymphoma in 2 of 10 sufferers successfully handled with piggyBac-modified CD19 CAR T cells. Blood. 2021;138:1504–9. https://doi.org/10.1182/blood.2021010813.

    Article 
    PubMed 

    Google Scholar
     

  • Wilson MH, Gottschalk S. Count on the surprising: piggyBac and lymphoma. Blood. 2021;138:1379–80. https://doi.org/10.1182/blood.2021012349.

    Article 
    PubMed 

    Google Scholar
     

  • Tao J, Wang Q, Mendez-Dorantes C, Burns KH, Chiarle R. Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 websites. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-31322-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao J, Bauer DE, Chiarle R. Assessing and advancing the protection of CRISPR-Cas instruments: from DNA to RNA modifying. Nat Commun. 2023;14:212. https://doi.org/10.1038/s41467-023-35886-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parums DV. Editorial: first regulatory approvals for CRISPRCas9 therapeutic gene modifying for sickle cell illness and transfusion-dependent beta-thalassemia. Med Sci Monitor. 2024. https://doi.org/10.12659/MSM.944204.

    Article 

    Google Scholar
     

  • Carlsten M, Levy E, Karambelkar A, Li L, Reger R, Berg M, Peshwa MV, Childs RW. Environment friendly mRNA-based genetic engineering of human NK cells with high-affinity CD16 and CCR7 augments rituximab-induced ADCC towards lymphoma and targets NK cell migration towards the lymph node-associated chemokine CCL19. Entrance Immunol. 2016;7:1–9. https://doi.org/10.3389/fimmu.2016.00105.

    Article 

    Google Scholar
     

  • Ingegnere T, Mariotti FR, Pelosi A, Quintarelli C, De Angelis B, Tumino N, Besi F, Cantoni C, Locatelli F, Vacca P, Moretta L. Human CAR NK cells: a brand new non-viral methodology permitting excessive environment friendly transfection and robust tumor cell killing. Entrance Immunol. 2019;10:1–10. https://doi.org/10.3389/fimmu.2019.00957.

    Article 

    Google Scholar
     

  • Maxcyte, Translation of NK Cell CAR Remedy to the Clinic: Crucial Function of Efficiency & Medical-scalability 2023. https://maxcyte.com/useful resource/translation-of-nk-cell-car-therapy-to-the-clinic-critical-role-of-performance-clinical-scalability/#:~:textual content=24percent20hourspercent20postpercent20electroporationpercent2070,expressionpercent20andpercent2087percent25percent20cellpercent20viability. Accessed 24 Nov 2023.

  • Ng YY, Tay JCK, Wang S. CXCR1 expression to enhance anti-cancer efficacy of intravenously injected CAR-NK cells in mice with peritoneal xenografts. Mol Ther Oncolytics. 2020;16:75–85. https://doi.org/10.1016/J.OMTO.2019.12.006.

    Article 
    PubMed 

    Google Scholar
     

  • Nakamura T, Kuroi M, Fujiwara Y, Warashina S, Sato Y, Harashima H. Small-sized, secure lipid nanoparticle for the environment friendly supply of siRNA to human immune cell traces. Sci Rep. 2016;6:1–9. https://doi.org/10.1038/srep37849.

    Article 

    Google Scholar
     

  • Douka S, Brandenburg LE, Casadidio C, Walther J, Garcia BBM, Spanholtz J, Raimo M, Hennink WE, Mastrobattista E, Caiazzo M. Lipid nanoparticle-mediated messenger RNA supply for ex vivo engineering of pure killer cells. J Management Launch. 2023;361:455–69. https://doi.org/10.1016/j.jconrel.2023.08.014.

    Article 
    PubMed 

    Google Scholar
     

  • Nakamura T, Nakade T, Yamada Okay, Sato Y, Harashima H. The hydrophobic tail of a pH-sensitive cationic lipid influences siRNA transfection exercise and toxicity in human NK cell traces. Int J Pharm. 2021;609: 121140. https://doi.org/10.1016/j.ijpharm.2021.121140.

    Article 
    PubMed 

    Google Scholar
     

  • Wilk AJ, Benner NL, Vergara R, Haabeth OAW, Levy R, Waymouth RM, Wender PA, Blish CA. Cost-altering releasable transporters allow particular phenotypic manipulation of pure killer cells for most cancers immunotherapy. Blood Adv. 2020;4:4244–55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim KS, Han JH, Park JH, Kim HK, Choi SH, Kim GR, Track H, An HJ, Han DK, Park W, Park KS. Multifunctional nanoparticles for genetic engineering and bioimaging of pure killer (NK) cell therapeutics. Biomaterials. 2019;221: 119418.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Z, Baxter AE, Ren D, Qin Okay, Chen Z, Collins SM, Huang H, Komar CA, Bailer PF, Parker JB, Blobel GA, Kohli RM, Wherry EJ, Berger SL, Shi J. Environment friendly engineering of human and mouse main cells utilizing peptide-assisted genome modifying. Nat Biotechnol. 2023. https://doi.org/10.1038/s41587-023-01756-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano. 2020. https://doi.org/10.1021/acsnano.0c07197.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA supply. Nat Rev Mater. 2021;6:1078–94. https://doi.org/10.1038/s41578-021-00358-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatterjee S, Kon E, Sharma P, Peer D. Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc Natl Acad Sci U S A. 2024. https://doi.org/10.1073/pnas.2307800120.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKinlay CJ, Vargas JR, Blake TR, Hardy JW, Kanada M, Contag CH, Wender PA, Waymouth RM. Cost-altering releasable transporters (CARTs) for the supply and launch of mRNA in residing animals. Proc Natl Acad Sci U S A. 2017;114:E448–56. https://doi.org/10.1073/pnas.1614193114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han Okay, Yang J, Chen S, Chen J-X, Liu C-W, Li C, Cheng H, Zhuo R-X, Zhang X-Z. Novel gene switch vectors primarily based on synthetic recombinant multi-functional oligopeptides. Int J Pharm. 2012;436:555–63. https://doi.org/10.1016/j.ijpharm.2012.07.001.

    Article 
    PubMed 

    Google Scholar
     

  • Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol. 2009;157:195–206.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masilamani M, Peruzzi G, Borrego F, Coligan JE. Endocytosis and intracellular trafficking of human pure killer cell receptors. Visitors. 2009;10:1735–44. https://doi.org/10.1111/j.1600-0854.2009.00973.x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao H, Tu W, Qin G, Regulation HKW, Sia SF, Chan P-L, Liu Y, Lam Okay-T, Zheng J, Peiris M, Lau Y-L. Influenza virus straight infects human pure killer cells and induces cell apoptosis. J Virol. 2009;83:9215–22. https://doi.org/10.1128/jvi.00805-09.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Erp EA, Van Kampen MR, Van Kasteren PB, De Wit J. Viral an infection of human pure killer cells. Viruses. 2019;11:1–13. https://doi.org/10.3390/v11030243.

    Article 

    Google Scholar
     

  • Gonçalves E, Kitas E, Seelig J. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Biochemistry. 2005;44:2692–702.

    Article 
    PubMed 

    Google Scholar
     

  • Letoha T, Keller-Pintér A, Kusz E, Kolozsi C, Bozsó Z, Tóth G, Vizler C, Oláh Z, Szilák L. Cell-penetrating peptide exploited syndecans. Biochim Biophys Acta Biomembr. 2010;1798:2258–65. https://doi.org/10.1016/j.bbamem.2010.01.022.

    Article 

    Google Scholar
     

  • Poon GMK, Gariépy J. Cell-surface proteoglycans as molecular portals for cationic peptide and polymer entry into cells. Biochem Soc Trans. 2007;35:788–93. https://doi.org/10.1042/BST0350788.

    Article 
    PubMed 

    Google Scholar
     

  • Pazina T, Shemesh A, Brusilovsky M, Porgador A, Campbell KS. Regulation of the features of pure cytotoxicity receptors by interactions with various ligands and alterations in splice variant expression. Entrance Immunol. 2017. https://doi.org/10.3389/fimmu.2017.00369.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brusilovsky M, Radinsky O, Cohen L, Yossef R, Shemesh A, Braiman A, Mandelboim O, Campbell KS, Porgador A. Regulation of pure cytotoxicity receptors by heparan sulfate proteoglycans in -cis: a lesson from NKp44. Eur J Immunol. 2015;45:1180–91. https://doi.org/10.1002/eji.201445177.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brusilovsky M, Radinsky O, Yossef R, Campbell KS, Porgador A. Carbohydrate-mediated modulation of NK cell receptor perform: structural and practical influences of heparan sulfate moieties expressed on NK cell floor. Entrance Oncol. 2014;4:1–3. https://doi.org/10.1038/nrc842.

    Article 

    Google Scholar
     

  • Durymanov M, Reineke J. Non-viral supply of nucleic acids: Perception into mechanisms of overcoming intracellular obstacles. Entrance Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00971.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma L, Ouyang Q, Werthmann GC, Thompson HM, Morrow EM. Dwell-cell microscopy and fluorescence-based measurement of luminal pH in intracellular organelles. Entrance Cell Dev Biol. 2017. https://doi.org/10.3389/fcell.2017.00071.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olden BR, Cheng E, Cheng Y, Pun SH. Figuring out key obstacles in cationic polymer gene supply to human T cells. Biomater Sci. 2019;7:789–97. https://doi.org/10.1039/c8bm01262h.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plesch E, Chen C-C, Butz E, Scotto Rosato A, Krogsaeter EK, Yinan H, Bartel Okay, Keller M, Robaa D, Teupser D, Holdt LM, Vollmar AM, Sippl W, Puertollano R, Medina D, Biel M, Wahl-Schott C, Bracher F, Grimm C. Selective agonist of TRPML2 reveals direct function in chemokine launch from innate immune cells. Elife. 2018. https://doi.org/10.7554/eLife.39720.001.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gleeson PA. The function of endosomes in innate and adaptive immunity. Semin Cell Dev Biol. 2014;31:64–72. https://doi.org/10.1016/j.semcdb.2014.03.002.

    Article 
    PubMed 

    Google Scholar
     

  • Mace EM. Human pure killer cells: kind, perform, and improvement. J Allergy Clin Immunol. 2023;151:371–85. https://doi.org/10.1016/J.JACI.2022.09.022.

    Article 
    PubMed 

    Google Scholar
     

  • Oth T, Habets THPM, Germeraad WTV, Zonneveld MI, Bos GMJ, Vanderlocht J. Pathogen recognition by NK cells amplifies the pro-inflammatory cytokine manufacturing of monocyte-derived DC through IFN-γ. BMC Immunol. 2018. https://doi.org/10.1186/s12865-018-0247-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carty M, Man C, Bowie AG. Detection of Viral Infections by Innate Immunity. Biochem Pharmacol. 2021. https://doi.org/10.1016/j.bcp.2020.114316.

    Article 
    PubMed 

    Google Scholar
     

  • Sutlu T, Nyström S, Gilljam M, Stellan B, Applequist SE, Alici E. Inhibition of intracellular antiviral protection mechanisms augments lentiviral transduction of human pure killer cells: implications for gene remedy. Hum Gene Ther. 2012;23:1090–100. https://doi.org/10.1089/hum.2012.080.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svitkin YV, Cheng YM, Chakraborty T, Presnyak V, John M, Sonenberg N. N1-methyl-pseudouridine in mRNA enhances translation by eIF2α-dependent and unbiased mechanisms by rising ribosome density. Nucleic Acids Res. 2017;45:6023–36. https://doi.org/10.1093/nar/gkx135.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andries O, McCafferty S, SmedtDe SC, Weiss R, Sanders NN, Kitada T. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by offering enhanced protein expression and lowered immunogenicity in mammalian cell traces and mice. J Contr Launch. 2015;217:337–44. https://doi.org/10.1016/j.jconrel.2015.08.051.

    Article 

    Google Scholar
     

  • Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, Karikó Okay. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010;38:5884–92. https://doi.org/10.1093/nar/gkq347.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahin U, Karikó Okay, Türeci Ö. mRNA-based therapeutics—growing a brand new class of medicine. Nat Rev Drug Discov. 2014;13:759–80. https://doi.org/10.1038/nrd4278.

    Article 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *