Ferroptosis-inducing nanomedicine and focused brief peptide for synergistic therapy of hepatocellular carcinoma | Journal of Nanobiotechnology

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Most cancers statistics, 2022. CA Most cancers J Clin. 2022;72(1):7–33.

    Article 
    PubMed 

    Google Scholar
     

  • Wege H, Schulze Ok, von Felden J, Calderaro J, Reig M. Uncommon liver tumors working group of the European Reference Community on Hepatological D. Uncommon variants of main liver most cancers: Fibrolamellar, mixed, and sarcomatoid hepatocellular carcinomas. Eur J Med Genet. 2021;64(11):104313.

    Article 
    PubMed 

    Google Scholar
     

  • Yaojie F, Luca M, Xin Wei W, Tim FG, Bin G. Alcohol-associated liver most cancers. Hepatology. 2024(0).

  • Jonggi C, Chanyoung J, Younger-Suk L. Tenofovir Versus Entecavir on recurrence of Hepatitis B Virus-Associated Hepatocellular Carcinoma after Surgical Resection. Hepatology. 2020;73(2).

  • Xiu-Ping Z, Xiang-Jun C, Bo-Zhao L, Shuai X, Zhou-Liang W, Ming-Gen H et al. Lively focused Janus nanoparticles allow anti-angiogenic drug combining chemotherapy agent to stop postoperative hepatocellular carcinoma recurrence. Biomaterials. 2022;281(0).

  • Abin Y, Manqing C, Zhigui G, Bingfeng Z, Junrong G, Hongyuan Z et al. Metformin sensitizes sorafenib to inhibit postoperative recurrence and metastasis of hepatocellular carcinoma in orthotopic mouse fashions. J Hematol Oncol. 2016;9(0).

  • Zeng ZM, Mo N, Zeng J, Ma FC, Jiang YF, Huang HS, et al. Advances in postoperative adjuvant remedy for main liver most cancers. World J Gastrointest Oncol. 2022;14(9):1604–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang W, Zhang B, Chen XP. Adjuvant therapy technique after healing resection for hepatocellular carcinoma. Entrance Med. 2021;15(2):155–69.

    Article 
    PubMed 

    Google Scholar
     

  • Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, et al. World burden of main liver most cancers in 2020 and predictions to 2040. J Hepatol. 2022;77(6):1598–606.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu D, Track T. Adjustments in and challenges concerning the surgical therapy of hepatocellular carcinoma in China. Biosci Tendencies. 2021;15(3):142–7.

    Article 
    PubMed 

    Google Scholar
     

  • Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382(20):1894–905.

    Article 
    PubMed 

    Google Scholar
     

  • Ding X, Solar W, Li W, Shen Y, Guo X, Teng Y, et al. Transarterial chemoembolization plus lenvatinib versus transarterial chemoembolization plus sorafenib as first-line therapy for hepatocellular carcinoma with portal vein tumor thrombus: a potential randomized examine. Most cancers. 2021;127(20):3782–93.

    Article 
    PubMed 

    Google Scholar
     

  • da Fonseca LG, Marta GN, Braghiroli M, Chagas AL, Carrilho FJ, Hoff PM, et al. Security and efficacy of cytotoxic chemotherapy in hepatocellular carcinoma after first-line therapy with sorafenib. BMC Most cancers. 2018;18(1):1250.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiang-Qiang F, Huan T, Jiang-Xue C, Jun-Bo Z, Fei L, Jia-Xin Q et al. Analysis progress of sorafenib drug supply system within the therapy of hepatocellular carcinoma: an replace. Biomed Pharmacother. 2024;177(0).

  • Yim HJ, Suh SJ, Um SH. Present administration of hepatocellular carcinoma: an jap perspective. World J Gastroenterol. 2015;21(13):3826–42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical foundation and therapeutic elements. Sign Transduct Goal Ther. 2020;5(1):87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hongxing Z, Yuhang L, Jie H, Jinling D, Qinliang M, Yao W et al. Potential targets and therapeutics for most cancers stem cell-based remedy in opposition to drug resistance in hepatocellular carcinoma. Drug Resist Updat. 2024;74(0).

  • Hu W, Zhou C, Jing Q, Li Y, Yang J, Yang C, et al. FTH promotes the proliferation and renders the HCC cells particularly resist to ferroptosis by sustaining iron homeostasis. Most cancers Cell Int. 2021;21(1):709.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells via autophagy dependent degradation of ferritin. Free Radic Biol Med. 2019;131:356–69.

    Article 
    PubMed 

    Google Scholar
     

  • Hannah KCC, Chia-Chou W, Yi-Chen L, Sheng-Hong C. Emergence of large-scale cell loss of life via ferroptotic set off waves. Nature. 2024;631:8021.


    Google Scholar
     

  • Scott JD, James AO. The cell biology of ferroptosis. Nat Rev Mol Cell Biol. 2024;25(6).

  • Li Y, Xu B, Ren X, Wang L, Xu Y, Zhao Y, et al. Inhibition of CISD2 promotes ferroptosis via ferritinophagy-mediated ferritin turnover and regulation of p62-Keap1-NRF2 pathway. Cell Mol Biol Lett. 2022;27(1):81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.

    Article 
    PubMed 

    Google Scholar
     

  • Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: equipment and regulation. Autophagy. 2021;17(9):2054–81.

    Article 
    PubMed 

    Google Scholar
     

  • Marcel SW, Christina M, Lars B-L, Jana KS, Sina CR, Artem S et al. STING orchestrates the neuronal inflammatory stress response in a number of sclerosis. Cell. 2024(0).

  • Li Y, Chen F, Chen J, Chan S, He Y, Liu W et al. Disulfiram/Copper induces Antitumor Exercise in opposition to each Nasopharyngeal Most cancers Cells and Most cancers-Related fibroblasts via ROS/MAPK and ferroptosis pathways. Cancers (Basel). 2020;12(1).

  • Yang L, Wang H, Yang X, Wu Q, An P, Jin X, et al. Auranofin mitigates systemic iron overload and induces ferroptosis through distinct mechanisms. Sign Transduct Goal Ther. 2020;5(1):138.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jo A, Bae JH, Yoon YJ, Chung TH, Lee EW, Kim YH, et al. Plasma-activated medium induces ferroptosis by depleting FSP1 in human lung most cancers cells. Cell Dying Dis. 2022;13(3):212.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Zhang Y, Liu J, Kang R, Klionsky DJ, Tang D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic loss of life. Autophagy. 2021;17(4):948–60.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou ZX, Cui Q, Zhang YM, Yang JX, Xiang WJ, Tian N, et al. Withaferin A inhibits ferroptosis and protects in opposition to intracerebral hemorrhage. Neural Regen Res. 2023;18(6):1308–15.

    Article 
    PubMed 

    Google Scholar
     

  • Saidak Z, Giacobbi A-S, Louandre C, Sauzay C, Mammeri Y, Galmiche A. Mathematical modelling unveils the important function of mobile phosphatases within the inhibition of RAF-MEK-ERK signalling by sorafenib in hepatocellular carcinoma cells. Most cancers Lett. 2017;392:1–8.

    Article 
    PubMed 

    Google Scholar
     

  • Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, et al. Pharmacological inhibition of cystine-glutamate alternate induces endoplasmic reticulum stress and ferroptosis. Elife. 2014;3:e02523.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, An P, Xie E, Wu Q, Fang X, Gao H, et al. Characterization of ferroptosis in murine fashions of hemochromatosis. Hepatology. 2017;66(2):449–65.

    Article 
    PubMed 

    Google Scholar
     

  • Zhanwei Z, Huan L, Ruoxi Y, Ying Y, Jingwen D, Yongxiang D et al. Glutathione Depletion-Induced activation of Dimersomes for potentiating the ferroptosis and immunotherapy of Chilly Tumor. Angew Chem Int Ed Engl. 2022;61(22).

  • Ren X, Li Y, Zhou Y, Hu W, Yang C, Jing Q, et al. Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells extra susceptible to disulfiram/copper-induced ferroptosis. Redox Biol. 2021;46:102122.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Q, Yuan Y, Yan B, Zhou J, Zuo J, Bai L. A brand new biomimetic nanozyme of hemin/graphdiyne oxide with superior peroxidase-like exercise for colorimetric bioassays. Analyst. 2021;146(23):7284–93.

    Article 
    PubMed 

    Google Scholar
     

  • Wang C, Yu P, Guo S, Mao L, Liu H, Li Y. Graphdiyne oxide as a platform for fluorescence sensing. Chem Commun (Camb). 2016;52(32):5629–32.

    Article 
    PubMed 

    Google Scholar
     

  • Dinh Phuc D, Viet QB, Minh Chien N, Sohyeon S, Van Dam D, Joosung Ok et al. Perception into Facile Ion Diffusion in Resistive switching medium towards low working voltage reminiscence. Nano Lett. 2024;24(26).

  • Weiqi L, Cong X, Tianyi X, Yanan J, Wenjie M, Ping Y et al. Big Water Uptake enabled Ultrahigh Proton Conductivity of Graphdiyne Oxide. Angew Chem Int Ed Engl. 2022;62(4).

  • Tao W, Mingsheng L, Li Y, Wenlong Y, Yuliang L. Managed progress Lateral/Vertical Heterostructure Interface for Lithium Storage. Adv Mater. 2024(0).

  • Jian Y, Pengfei Y, Zongwei C, Wei L, Zhaoxi L, Zijian M et al. Interfacial Bonding Induced Cost switch in two-dimensional amorphous MoO(3-x)/Graphdiyne oxide Non-van Der Waals Heterostructures for Dominant SERS Enhancement. Chemistry. 2024;30(29).

  • Qianli H, Xue L, Weiwei C, Lin C, Xuefei M. A novel functionalized graphdiyne oxide membrane for environment friendly elimination and fast detection of mercury in water. J Hazard Mater. 2024;467(0).

  • Ma W, Xue Y, Guo S, Jiang Y, Wu F, Yu P, et al. Graphdiyne oxide: a brand new carbon nanozyme. Chem Commun (Camb). 2020;56(38):5115–8.

    Article 
    PubMed 

    Google Scholar
     

  • Yu L, Jiawen W, Yeyu W, Rongxian M, Yuyi Z, Jinyue S et al. An all-graphdiyne electrochemiluminescence biosensor for the ultrasensitive detection of microRNA-21 based mostly on the right track recycling with DNA cascade response for sign amplification. Analyst. 2023;148(6).

  • Qiwei W, Ying L, Hui W, Penglei J, Wenchang Q, Min Y et al. Graphdiyne oxide nanosheets show selective anti-leukemia efficacy in opposition to DNMT3A-mutant AML cells. Nat Commun. 2022;13(1).

  • Jiang W, Zhang Z, Wang Q, Dou J, Zhao Y, Ma Y, et al. Tumor reoxygenation and blood perfusion enhanced photodynamic remedy utilizing ultrathin Graphdiyne Oxide nanosheets. Nano Lett. 2019;19(6):4060–7.

    Article 
    PubMed 

    Google Scholar
     

  • Xing E, Du Y, Yin J, Chen M, Zhu M, Wen X, et al. Multi-functional Nanodrug based mostly on a three-dimensional Framework for focused photo-chemo Synergetic Most cancers Remedy. Adv Healthc Mater. 2021;10(8):e2001874.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang B, Zhang R, Zhang J, Hou Y, Chen X, Zhou M, et al. GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma remedy. Theranostics. 2019;9(8):2167–82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jian Z, Xiuxiu W, Liang C, Jiandong Y, Zhiyuan Z. SP94 peptide mediating extremely particular and efficacious supply of polymersomal doxorubicin hydrochloride to hepatocellular carcinoma in vivo. Colloids Surf B Biointerfaces. 2020;197(0).

  • Lei H, Zhaozhao L, Danjie S, Haichen D, Kuo Z, Wangqian Z, et al. Tumor Microenvironment-Responsive Nanocapsule Supply CRISPR/Cas9 to Reprogram the Immunosuppressive Microenvironment in Hepatoma Carcinoma. Adv Sci (Weinh). 2024;11:26.


    Google Scholar
     

  • Shi Y, van der Meel R, Chen X, Lammers T. The EPR impact and past: methods to enhance tumor concentrating on and most cancers nanomedicine therapy efficacy. Theranostics. 2020;10(17):7921–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukaddes I, Christy M, Bella BM, Stefaan JS. Using various methods for enhanced nanoparticle supply to stable tumors. Chem Rev. 2021;121(3).

  • Jie Kai T, Li Xian Y, Eveline Sheau T, Supawan S, Arun P, Pu Chun Ok et al. Nanoparticles’ interactions with vasculature in illnesses. Chem Soc Rev. 2019;48(21).

  • Zhang Y, Gu Z, Yun S, Luo Ok, Bi J, Jiao Y, et al. Inexperienced synthesis of DOX-loaded hole MIL-100 (fe) nanoparticles for anticancer therapy by concentrating on mitochondria. Nanotechnology. 2022;33:34.


    Google Scholar
     

  • Wei T, Xiaojun X, Peilong C. Magnoflorine improves sensitivity to doxorubicin (DOX) of breast most cancers cells through inducing apoptosis and autophagy via AKT/mTOR and p38 signaling pathways. Biomed Pharmacother. 2020;121:109139.

    Article 
    PubMed 

    Google Scholar
     

  • Xuan W, Yuanyuan Z, Yan H, Yang F, Youbo Z, Chencheng X, et al. Activatable Biomineralized Nanoplatform remodels the intracellular atmosphere of Multidrug-Resistant Tumors for Enhanced Ferroptosis/Apoptosis Remedy. Small. 2021;17:47.


    Google Scholar
     

  • Munnier E, Cohen-Jonathan S, Linassier C, Douziech-Eyrolles L, Marchais H, Souce M, et al. Novel methodology of doxorubicin-SPION reversible affiliation for magnetic drug concentrating on. Int J Pharm. 2008;363(1–2):170–6.

    Article 
    PubMed 

    Google Scholar
     

  • Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe Ok et al. Mitochondria-dependent ferroptosis performs a pivotal function in doxorubicin cardiotoxicity. JCI Perception. 2020;5(9).

  • Chen X, Meng L, Yang Z, Jun Z, Yan H, Kai C, et al. Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in goal tumor cells. Sci Adv. 2020;eaax1346:1.


    Google Scholar
     

  • Chen L, Li X, Liu L, YU B, XUE Y, LIU Y. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase perform. Oncol Rep. 2015;33.

  • Hideaki O, Kazuaki T, Mariko S, Takafumi Ok, Hiroshi Y, Reiko W et al. Concentrating on the vulnerability of glutathione metabolism in ARID1A-Poor cancers. Most cancers Cell. 2019;35(2).

  • Joanne LP, Justin CD, Dimitrios Ok, Gabriel Ok, Philip CB, Susan ML et al. Molecular foundation for redox management by the human cystine/glutamate antiporter system xc(). Nat Commun. 2021;12(1).

  • Ma W, Xue Y, Guo S, Jiang Y, Wu F, Yu P, et al. Graphdiyne oxide: a brand new carbon nanozyme. Chem Commun. 2020;56(38):5115–8.

    Article 

    Google Scholar
     

  • Zhang Y, Liu W, Li Y, Yang YW, Dong A, Li Y. 2D Graphdiyne Oxide serves as a Superior New Era of Antibacterial brokers. iScience. 2019;19:662–75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai Q, Zhang C, Li L, Zhu Z, Wang L, Jiang F, et al. Subsequent monitoring of ferric ion and ascorbic acid utilizing graphdiyne quantum dots-based optical sensors. Mikrochim Acta. 2020;187(12):657.

    Article 
    PubMed 

    Google Scholar
     

  • Hetong Q, Yuxi T, Mengyue Z, Xuemei W, Ling Y. Boron-doped and Ketonic Carbonyl Group-Enriched Graphdiyne as a dual-site Carbon Nanozyme with enhanced peroxidase-like exercise. Anal Chem. 2022;94(49).

  • Xihong G, Huan H, Rongli C, Dongmei W, Jiali L, Dan W et al. Graphdiyne Oxide Quantum dots: the enhancement of peroxidase-like exercise and their purposes in sensing H(2)O(2) and cysteine. ACS Appl Bio Mater. 2022;5(7).

  • Qiqi Z, Yonghua Y, Bin Y, Jing Z, Jianli Z, Lijuan B. A brand new biomimetic nanozyme of hemin/graphdiyne oxide with superior peroxidase-like exercise for colorimetric bioassays. Analyst. 2021;146(23).

  • Wenjie M, Yifei X, Shuyue G, Yanan J, Fei W, Ping Y et al. Graphdiyne oxide: a brand new carbon nanozyme. Chem Commun (Camb). 2020;56(38).

  • Zhu Z, Bai Q, Li S, Li S, Liu M, Du F, et al. Antibacterial exercise of Graphdiyne and Graphdiyne Oxide. Small. 2020;16(34):e2001440.

    Article 
    PubMed 

    Google Scholar
     

  • Lizhen W, Yang Z, Linhao L, Xuezheng G, Dandan D, Lu Y et al. Graphdiyne oxide elicits a minor foreign-body response and generates quantum dots resulting from quick degradation. J Hazard Mater. 2022;445(0).

  • Kaisong Y, Miguel Ángel L, Beatriz J-S, Alberto E. Janus Micromotors Coated with 2D nanomaterials as dynamic interfaces for (Bio)-Sensing. ACS Appl Mater Interfaces. 2020;12(41).

  • Hetong Q, Ping Y, Yuexiang W, Guangchao H, Huibiao L, Yuanping Y et al. Graphdiyne oxides as wonderful substrate for electroless deposition of pd clusters with excessive catalytic exercise. J Am Chem Soc. 2015;137(16).

  • Shuyue G, Hailong Y, Fei W, Lijun Z, Ping Y, Huibiao L et al. Graphdiyne as Electrode Materials: tuning Digital State and Floor Chemistry for Improved Electrode Reactivity. Anal Chem. 2017;89(23).

  • Ma Ok, Li W, Zhu G, Chi H, Yin Y, Li Y, et al. PEGylated DOX-coated nano graphene oxide as pH-responsive multifunctional nanocarrier for focused drug supply. J Drug Goal. 2021;29(8):884–91.

    Article 
    PubMed 

    Google Scholar
     

  • Wang X, Zhao Y, Hu Y, Fei Y, Zhao Y, Xue C, et al. Activatable Biomineralized Nanoplatform remodels the intracellular atmosphere of Multidrug-Resistant Tumors for Enhanced Ferroptosis/Apoptosis Remedy. Small. 2021;17(47):e2102269.

    Article 
    PubMed 

    Google Scholar
     

  • Abdelgalil AA, Alkahtani HM, Al-Jenoobi FI. Sorafenib Profiles Drug Subst Excip Relat Methodol. 2019;44:239–66.

    Article 
    PubMed 

    Google Scholar
     

  • Kong R, Wang N, Han W, Bao W, Lu J. IFNgamma-mediated repression of system xc(-) drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells. J Leukoc Biol. 2021;110(2):301–14.

    Article 
    PubMed 

    Google Scholar
     

  • Reem A, Jos vdV, Nicholas H, Zhihua P, Maximilian M, Cuixia E et al. Glutaredoxin attenuates glutathione ranges through deglutathionylation of Otub1 and subsequent destabilization of system x(C)(). Sci Adv. 2023;9(37).

  • Zhang VX, Sze KM, Chan LK, Ho DW, Tsui YM, Chiu YT, et al. Antioxidant dietary supplements promote tumor formation and progress and confer drug resistance in hepatocellular carcinoma by decreasing intracellular ROS and induction of TMBIM1. Cell Biosci. 2021;11(1):217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Q, Liu M, Huang W, Chen X, Zhang B, Zhang T, et al. IL-1beta-Induced Elevation of Solute Provider Household 7 Member 11 promotes Hepatocellular Carcinoma Metastasis via Up-regulating programmed loss of life Ligand 1 and colony-stimulating issue 1. Hepatology. 2021;74(6):3174–93.

    Article 
    PubMed 

    Google Scholar
     

  • Guo M, Zhao L, Liu J, Wang X, Yao H, Chang X, et al. The underlying perform and Structural Group of the Intracellular Protein Corona on Graphdiyne Oxide Nanosheet for native Immunomodulation. Nano Lett. 2021;21(14):6005–13.

    Article 
    PubMed 

    Google Scholar
     

  • Guo X, Huang H, Cui R, Wang D, Liu J, Wang D, et al. Graphdiyne Oxide Quantum dots: the enhancement of peroxidase-like exercise and their purposes in sensing H(2)O(2) and cysteine. ACS Appl Bio Mater. 2022;5(7):3418–27.

    Article 
    PubMed 

    Google Scholar
     

  • Yan H, Guo S, Wu F, Yu P, Liu H, Li Y, et al. Carbon Atom hybridization issues: Ultrafast Humidity response of Graphdiyne Oxides. Angew Chem Int Ed Engl. 2018;57(15):3922–6.

    Article 
    PubMed 

    Google Scholar
     

  • Chen F, Fang Y, Chen X, Deng R, Zhang Y, Shao J. Latest advances of sorafenib nanoformulations for most cancers remedy: Good nanosystem and mixture remedy. Asian J Pharm Sci. 2021;16(3):318–36.

    Article 
    PubMed 

    Google Scholar
     

  • Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the function of GSH and GPx4. Free Radic Biol Med. 2020;152:175–85.

    Article 
    PubMed 

    Google Scholar
     

  • Baiyu Q, Fereshteh Z, Carla TB, Eduard R, Rajesh Kumar S, Wei G et al. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell. 2024;187(5).

  • Tao X, Yingchao C, Qiang P, Shuai L, Saran L, Mingle L et al. Lipid droplet concentrating on sort I photosensitizer for ferroptosis through lipid peroxidation Accumulation. Adv Mater. 2023;36(4).

  • Du J, Wang X, Li Y, Ren X, Zhou Y, Hu W, et al. DHA reveals synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma through modulation of iron metabolism. Cell Dying Dis. 2021;12(7):705.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Wang X, Huang Z, Zhou Y, Xia J, Hu W, et al. CISD3 inhibition drives cystine-deprivation induced ferroptosis. Cell Dying Dis. 2021;12(9):839.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erdem MT, Vladislav OS, Samantha WA, Gabrielle CW, Richard P. Iron-sulfur cluster deficiency will be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis impartial of IRP1 and FBXL5. Sci Adv. 2021;7(22).

  • Wang H, Liu C, Zhao Y, Gao G. Mitochondria regulation in ferroptosis. Eur J Cell Biol. 2020;99(1).

  • Nathan PW, Sang Jun Y, Tyce F, Amanda MS, Maddison AO, Juliana M et al. Mitochondrial respiratory perform is preserved beneath cysteine hunger through glutathione catabolism in NSCLC. Nat Commun. 2024;15(1).

  • Xie Y, Hou W, Track X, Yu Y, Huang J, Solar X, et al. Ferroptosis: course of and performance. Cell Dying Differ. 2016;23(3):369–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mengyao C, Xiaohan T, Yanting S, Chunyan D, Chen L, Chunhui W et al. A ferroptosis amplifier based mostly on triple-enhanced lipid peroxides accumulation technique for efficient pancreatic most cancers remedy. Biomaterials. 2024;309(0).

  • Suleixin Y, Yi W, Wenzhao Z, Ruie C, Meilin W, Meiwan C. GSH/pH twin activatable cross-linked and fluorinated PEI for Most cancers Gene Remedy via Endogenous Iron De-hijacking and in situ ROS amplification. Adv Mater. 2023;36(2).

  • Jiawei Z, Xiaorui W, Yan S, Jinjun S, Xuejiao S, Wenjun W et al. Multifunctional nanolocks with GSH as the important thing for synergistic ferroptosis and anti-chemotherapeutic resistance. Biomaterials. 2022;288(0).

  • Wei R, Zhao Y, Wang J, Yang X, Li S, Wang Y, et al. Tagitinin C induces ferroptosis via PERK-Nrf2-HO-1 signaling pathway in colorectal most cancers cells. Int J Biol Sci. 2021;17(11):2703–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamed E, Sierra RA, Trillo-Tinoco J, Cao Y, Innamarato P, Payne KK, et al. The unfolded protein response Mediator PERK governs myeloid cell-driven immunosuppression in tumors via inhibition of STING Signaling. Immunity. 2020;52(4):668–82. e7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yilei Z, Robert VS, Litong N, Xiaoguang L, Chao W, Hyemin L et al. mTORC1 {couples} cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 2021;12(1).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *