Insights into the prospects of nanobiomaterials within the remedy of cardiac arrhythmia | Journal of Nanobiotechnology

  • Murray CJL. The worldwide burden of illness research at 30 years. Nat Med. 2022;28:2019–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. Coronary heart illness and stroke statistics-2023 replace: a report from the American coronary heart affiliation. Circulation. 2023;147:e93-621.

    Article 
    PubMed 

    Google Scholar
     

  • Kléber AG, Rudy Y. Fundamental mechanisms of cardiac impulse propagation and related arrhythmias. Physiol Rev. 2004;84:431–88.

    Article 
    PubMed 

    Google Scholar
     

  • Kovacs B, Mayinger M, Andratschke N, Saguner AM. Stereotactic arrhythmia radioablation: competitor or adjunct to catheter ablation? Eur Coronary heart J. 2022;43:3279–81.

    Article 
    PubMed 

    Google Scholar
     

  • Schnabel RB, Yin X, Gona P, Larson MG, Beiser AS, McManus DD, et al. 50 yr traits in atrial fibrillation prevalence, incidence, danger components, and mortality within the Framingham coronary heart research: a cohort research. Lancet Lond Engl. 2015;386:154–62.

    Article 

    Google Scholar
     

  • Murakoshi N, Aonuma Ok. Epidemiology of arrhythmias and sudden cardiac loss of life in Asia. Circ J. 2013;77:2419–31.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang X, Gao Y, Zhou Y, Liu Z, Liu R. Pharmacological mechanism of pure medicine and their energetic substances within the remedy of arrhythmia through calcium channel regulation. Biomed Pharmacother. 2023;160:114413.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monteiro LM, Vasques-Nóvoa F, Ferreira L, Pinto-do-Ó P, Nascimento DS. Restoring coronary heart perform and electrical integrity: closing the circuit. Npj Regen Med. 2017;2:9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clauss S, Bleyer C, Schüttler D, Tomsits P, Renner S, Klymiuk N, et al. Animal fashions of arrhythmia: basic electrophysiology to genetically modified massive animals. Nat Rev Cardiol. 2019;16:457–75.

    Article 
    PubMed 

    Google Scholar
     

  • Chun Ok-RJ, Miklavčič D, Vlachos Ok, Bordignon S, Scherr D, Jais P, et al. State-of-the-art pulsed subject ablation for cardiac arrhythmias: ongoing evolution and future perspective. Eur Eur Pacing Arrhythm Card Electrophysiol J Work Teams Card Pacing Arrhythm Card Cell Electrophysiol Eur Soc Cardiol. 2024;26:134.


    Google Scholar
     

  • Maron BJ, Estes NAM, Rowin EJ, Maron MS, Reynolds MR. Growth of the implantable cardioverter-defibrillator: JACC historic breakthroughs in perspective. J Am Coll Cardiol. 2023;82:353–73.

    Article 
    PubMed 

    Google Scholar
     

  • Gaur N, Ortega F, Verkerk AO, Mengarelli I, Krogh-Madsen T, Christini DJ, et al. Validation of quantitative measure of repolarization reserve as a novel marker of drug induced proarrhythmia. J Mol Cell Cardiol. 2020;145:122–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Tao, Li W, Huang Q, Yuan C, Qu L, Xiao X, et al. The scientific efficacy and security of 11 generally used remedy methods bettering arrhythmia of CHD in China: a community meta-analysis. Entrance Pharmacol. 2021;12:741716.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC pointers for the analysis and remedy of acute and power coronary heart failure. Eur Coronary heart J. 2021;42:3599–726.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bordignon S, Chun KRJ, Gunawardene M, Fuernkranz A, City V, Schulte-Hahn B, et al. Comparability of balloon catheter ablation applied sciences for pulmonary vein isolation: the laser versus cryo research. J Cardiovasc Electrophysiol. 2013;24:987–94.

    Article 
    PubMed 

    Google Scholar
     

  • Kuck Ok-H, Brugada J, Fürnkranz A, Metzner A, Ouyang F, Chun KRJ, et al. Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med. 2016;374:2235–45.

    Article 
    PubMed 

    Google Scholar
     

  • Duytschaever M, De Potter T, Grimaldi M, Anic A, Vijgen J, Neuzil P, et al. Paroxysmal atrial fibrillation ablation utilizing a novel variable-loop biphasic pulsed subject ablation catheter built-in with a third-dimensional mapping system: 1-year outcomes of the multicenter inspIRE research. Circ Arrhythm Electrophysiol. 2023. https://doi.org/10.1161/CIRCEP.122.011780.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furnkranz A, Bordignon S, Schmidt B, Perrotta L, Dugo D, De Lazzari M, et al. Incidence and traits of phrenic nerve palsy following pulmonary vein isolation with the second-generation as in contrast with the first-generation cryoballoon in 360 consecutive sufferers. Europace. 2015;17:574–8.

    Article 
    PubMed 

    Google Scholar
     

  • Bordignon S, My I, Tohoku S, Rillig A, Schaack D, Chen S, et al. Efficacy and security in sufferers handled with a novel radiofrequency balloon: a two centres expertise from the AURORA collaboration. Europace. 2023;25:106.

    Article 

    Google Scholar
     

  • Boersma L, Andrade JG, Betts T, Duytschaever M, Pürerfellner H, Santoro F, et al. Progress in atrial fibrillation ablation throughout 25 years of Europace journal. Eur Eur Pacing Arrhythm Card Electrophysiol J Work Teams Card Pacing Arrhythm Card Cell Electrophysiol Eur Soc Cardiol. 2023;25:244.


    Google Scholar
     

  • Sawatari H, Ohkusa T, Rahamawati A, Ishikawa Ok, Tsuchihashi-Makaya M, Ohtsuka Y, et al. 35Article: left ventricular ejection fraction predicts severity of posttraumatic stress dysfunction in sufferers with implantable cardioverter-defibrillators. Clin Cardiol. 2016;39:263–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kajanová A, Bulava A, Eisenberger M. 36Article: components influencing psychological standing and high quality of life in sufferers with implantable cardioverter-defibrillators. Neuro Endocrinol Lett. 2014;35(Suppl 1):54–8.

    PubMed 

    Google Scholar
     

  • Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, et al. Various purposes of nanomedicine. ACS Nano. 2017;11:2313–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radomska A, Leszczyszyn J, Radomski MW. The nanopharmacology and nanotoxicology of nanomaterials: new alternatives and challenges. Adv Clin Exp Med Off Organ Wroclaw Med Univ. 2016;25:151–62.

    Article 

    Google Scholar
     

  • Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, et al. Cardiac transmembrane ion channels and motion potentials: mobile physiology and arrhythmogenic habits. Physiol Rev. 2021;101:1083–176.

    Article 
    PubMed 

    Google Scholar
     

  • Bers DM. Excitation-contraction coupling and cardiac contractile drive. Dordrecht: Springer; 2001.

    Ebook 

    Google Scholar
     

  • Patel SP, Campbell DL. Transient outward potassium present, ‘Ito’, phenotypes within the mammalian left ventricle: underlying molecular, mobile and biophysical mechanisms. J Physiol. 2005;569:7–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carol Ann R. Attending to the guts of rhythm: a century of progress. Physiol Rev. 2022;102:1553–67.

    Article 

    Google Scholar
     

  • Grune J, Yamazoe M, Nahrendorf M. Electroimmunology and cardiac arrhythmia. Nat Rev Cardiol. 2021;18:547–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen JA, van Veen TAB, de Bakker JMT, van Rijen HVM. Cardiac connexins and impulse propagation. J Mol Cell Cardiol. 2010;48:76–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis LM, Kanter HL, Beyer EC, Saffitz JE. Distinct hole junction protein phenotypes in cardiac tissues with disparate conduction properties. J Am Coll Cardiol. 1994;24:1124–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Severs NJ, Bruce AF, Dupont E, Rothery S. Remodelling of hole junctions and connexin expression in diseased myocardium. Cardiovasc Res. 2008;80:9–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanter HL, Laing JG, Beau SL, Beyer EC, Saffitz JE. Distinct patterns of connexin expression in canine Purkinje fibers and ventricular muscle. Circ Res. 1993;72:1124–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gourdie RG, Severs NJ, Inexperienced CR, Rothery S, Germroth P, Thompson RP. The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to practical properties of elements of the cardiac atrioventricular conduction system. J Cell Sci. 1993;105(Pt 4):985–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Temple IP, Inada S, Dobrzynski H, Boyett MR. Connexins and the atrioventricular node. Coronary heart Rhythm. 2013;10:297–304.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veenstra RD, Wang HZ, Westphale EM, Beyer EC. A number of connexins confer distinct regulatory and conductance properties of hole junctions in growing coronary heart. Circ Res. 1992;71:1277–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis LM, Rodefeld ME, Inexperienced Ok, Beyer EC, Saffitz JE. Hole junction protein phenotypes of the human coronary heart and conduction system. J Cardiovasc Electrophysiol. 1995;6:813–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hegyi B, Bossuyt J, Griffiths LG, Shimkunas R, Coulibaly Z, Jian Z, et al. Complicated electrophysiological transforming in postinfarction ischemic coronary heart failure. Proc Natl Acad Sci USA. 2018;115:E3036–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinno H, Derakhchan Ok, Libersan D, Merhi Y, Leung TK, Nattel S. Atrial ischemia promotes atrial fibrillation in canines. Circulation. 2003;107:1930–6.

    Article 
    PubMed 

    Google Scholar
     

  • Rivard L, Sinno H, Shiroshita-Takeshita A, Schram G, Leung T-Ok, Nattel S. The pharmacological response of ischemia-related atrial fibrillation in canines: proof for substrate-specific efficacy. Cardiovasc Res. 2007;74:104–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishida Ok, Qi XY, Wakili R, Comtois P, Chartier D, Harada M, et al. Mechanisms of atrial tachyarrhythmias related to coronary artery occlusion in a power canine mannequin. Circulation. 2011;123:137–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tk Ok, Ir E. Mechanisms of fibrillation: neurogenic or myogenic? Reentrant or focal? A number of or single? Nonetheless puzzling after 160 years of inquiry. J Cardiovasc Electrophysiol. 2010. https://doi.org/10.1111/j.1540-8167.2010.01820.x.

    Article 

    Google Scholar
     

  • Nattel S. New concepts about atrial fibrillation 50 years on. Nature. 2002;415:219–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jalife J. Ventricular fibrillation: mechanisms of initiation and upkeep. Annu Rev Physiol. 2000;62:25–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wakili R, Voigt N, Kääb S, Dobrev D, Nattel S. Latest advances within the molecular pathophysiology of atrial fibrillation. J Clin Make investments. 2011;121:2955–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bossu A, Houtman MJC, Meijborg VMF, Varkevisser R, Beekman HDM, Dunnink A, et al. Selective late sodium present inhibitor GS-458967 suppresses Torsades de pointes by largely affecting perpetuation however not initiation of the arrhythmia. Br J Pharmacol. 2018;175:2470–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Kim TY, Huang X, Liu MB, Koren G, Choi B-R, et al. Mechanisms linking T-wave alternans to spontaneous initiation of ventricular arrhythmias in rabbit fashions of lengthy QT syndrome. J Physiol. 2018;596:1341–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhee J-W, Wu JC. Advances in nanotechnology for the administration of coronary artery illness. Traits Cardiovasc Med. 2013;23:39–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer analysis. Int J Nanomed. 2012;7:4391–408.

    CAS 

    Google Scholar
     

  • Wang AZ, Langer R, Farokhzad OC. Nanoparticle supply of most cancers medicine. Annu Rev Med. 2012;63:185–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soumya RS, Raghu KG. Latest advances on nanoparticle-based therapies for cardiovascular ailments. J Cardiol. 2023;81:10–8.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang W, Ming Xu, Qin Mu, Zhang D, Shaohui Wu, Liu Xu, et al. Research on the function and mechanism of lncRNA within the transforming of atrial power metabolism in rabbits with atrial fibrillation primarily based on nano sensor know-how. Bioengineered. 2022;13:863–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nadimi AE, Yousef Ebrahimipour S, Afshar EG, Falahati-Pour SK, Ahmadi Z, Mohammadinejad R, et al. Nano-scale drug supply programs for antiarrhythmic brokers. Eur J Med Chem. 2018;157:1153–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Tong Qi, Li T, Qian Y. Nano medicine supply system: a novel promise for the remedy of atrial fibrillation. Entrance Cardiovasc Med. 2022;9:906350.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jalilinejad N, Rabiee M, Baheiraei N, Ghahremanzadeh R, Salarian R, Rabiee N, et al. Electrically conductive carbon-based (bio)-nanomaterials for cardiac tissue engineering. Bioeng Transl Med. 2023;8:e10347.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bakola V, Karagkiozaki V, Tsiapla AR, Pappa F, Moutsios I, Pavlidou E, et al. Dipyridamole-loaded biodegradable PLA nanoplatforms as coatings for cardiovascular stents. Nanotechnology. 2018;29:275101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amin DR, Sink E, Narayan SP, Abdel-Hafiz M, Mestroni L, Peña B. Nanomaterials for cardiac tissue engineering. Mol Basel Switz. 2020;25:5189.

    CAS 

    Google Scholar
     

  • Nguyen AH, Marsh P, Schmiess-Heine L, Burke PJ, Lee A, Lee J, et al. Cardiac tissue engineering: state-of-the-art strategies and outlook. J Biol Eng. 2019;13:57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleischer S, Feiner R, Dvir T. 40Review: cutting-edge platforms in cardiac tissue engineering. Curr Opin Biotechnol. 2017;47:23–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haq AU, Carotenuto F, Di Nardo P, Francini R, Prosposito P, Pescosolido F, et al. Extrinsically conductive nanomaterials for cardiac tissue engineering purposes. Micromachines. 2021;12:914.

    Article 

    Google Scholar
     

  • Ahmad Z, Shah A, Siddiq M, Kraatz H-B. Polymeric micelles as drug supply automobiles. RSC Adv. 2014;4:17028–38.

    Article 
    CAS 

    Google Scholar
     

  • Roche ET, Hastings CL, Lewin SA, Shvartsman DE, Brudno Y, Vasilyev NV, et al. Comparability of biomaterial supply automobiles for bettering acute retention of stem cells within the infarcted coronary heart. Biomaterials. 2014;35:6850–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crampton HL, Simanek EE. Dendrimers as drug supply automobiles: non-covalent interactions of bioactive compounds with dendrimers. Polym Int. 2007;56:489–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical supply purposes. Chem Soc Rev. 2012;41:2545–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilczewska AZ, Niemirowicz Ok, Markiewicz KH, Automotive H. Nanoparticles as drug supply programs. Pharmacol Rep PR. 2012;64:1020–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang RX, Li J, Zhang T, Amini MA, He C, Lu B, et al. Significance of integrating nanotechnology with pharmacology and physiology for revolutionary drug supply and remedy—an illustration with firsthand examples. Acta Pharmacol Sin. 2018;39:825–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayford R, Rademacher T, Roitt I, Wang SX. Rising purposes of nanotechnology for analysis and remedy of illness: a evaluate. Physiol Meas. 2017;38:R183-203.

    Article 
    PubMed 

    Google Scholar
     

  • Rizvi SAA, Saleh AM. Functions of nanoparticle programs in drug supply know-how. Saudi Pharm J SPJ Off Publ Saudi Pharm Soc. 2018;26:64–70.


    Google Scholar
     

  • Martinez-Hernandez E, Blatter LA. Impact of carvedilol on atrial excitation-contraction coupling, Ca2+ launch, and arrhythmogenicity. Am J Physiol Coronary heart Circ Physiol. 2020;318:H1245–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penttilä T, Mäkynen H, Hartikainen J, Hyppölä H, Lauri T, Lehto M, et al. Antiarrhythmic drug remedy amongst sufferers presenting to emergency division with symptomatic atrial fibrillation—a potential nationwide cohort. Scand J Trauma Resusc Emerg Med. 2017;25:81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arzani G, Haeri A, Daeihamed M, Bakhtiari-Kaboutaraki H, Dadashzadeh S. Niosomal carriers improve oral bioavailability of carvedilol: results of bile salt-enriched vesicles and provider floor cost. Int J Nanomed. 2015;10:4797–813.

    CAS 

    Google Scholar
     

  • Shah MK, Madan P, Lin S. Elucidation of intestinal absorption mechanism of carvedilol-loaded stable lipid nanoparticles utilizing Caco-2 cell line as an in-vitro mannequin. Pharm Dev Technol. 2015;20:877–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aboud HM, El Komy MH, Ali AA, El Menshawe SF, Elbary AAbd. Growth, optimization, and analysis of carvedilol-loaded stable lipid nanoparticles for intranasal drug supply. AAPS PharmSciTech. 2016;17:1353–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srinivasarao M, Low PS. Ligand-targeted drug supply. Chem Rev. 2017;117:12133–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sergeevichev DS, Krasilnikova AA, Strelnikov AG, Fomenko VV, Salakhutdinov NF, Romanov AB, et al. Globular chitosan prolongs the efficient length time and reduces the acute toxicity of botulinum neurotoxin after intramuscular injection in rats. Toxicon. 2018;143:90–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamilton D, Nandkeolyar S, Lan H, Desai P, Evans J, Hauschild C, et al. Amiodarone: a complete information for clinicians. Am J Cardiovasc Medication. 2020;20:549–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pokorney SD, Holmes DN, Shrader P, Thomas L, Fonarow GC, Mahaffey KW, et al. Patterns of amiodarone use and outcomes in scientific follow for atrial fibrillation. Am Coronary heart J. 2020;220:145–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vassallo P, Trohman RG. Prescribing amiodarone: an evidence-based evaluate of scientific indications. JAMA. 2007;298:1312.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feduska ET, Thoma BN, Torjman MC, Goldhammer JE. Acute amiodarone pulmonary toxicity. J Cardiothorac Vasc Anesth. 2021;35:1485–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goundan PN, Lee SL. Thyroid results of amiodarone: scientific replace. Curr Opin Endocrinol Diabetes Obes. 2020;27:329–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruzieh M, Moroi MK, Aboujamous NM, Ghahramani M, Naccarelli GV, Mandrola J, et al. Meta-analysis evaluating the relative danger of antagonistic occasions for amiodarone versus placebo. Am J Cardiol. 2019;124:1889–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Motawea A, Ahmed DAM, Eladl AS, El-Mansy AAEl-R, Saleh NM. Appraisal of amiodarone-loaded PLGA nanoparticles for potential security and toxicity in a rat mannequin. Life Sci. 2021;274:119344.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Motawea A, Ahmed DAM, El-Mansy AA, Saleh NM. Essential function of PLGA nanoparticles in mitigating the amiodarone-induced pulmonary toxicity. Int J Nanomed. 2021;16:4713–37.


    Google Scholar
     

  • Liu Y, Lingling X, Zhang Q, Kang Y, Liu L, Liu Z, et al. Localized myocardial anti-inflammatory results of temperature-sensitive budesonide nanoparticles throughout radiofrequency catheter ablation. Analysis. 2022. https://doi.org/10.3413/2022/9816234.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lilei Yu, Scherlag BS, Dormer Ok, Rutel I, Huang B, Zhou X, et al. Focused ganglionated plexi denervation utilizing magnetic nanoparticles carrying calcium chloride payload. JACC Clin Electrophysiol. 2018;4:1347–58.

    Article 

    Google Scholar
     

  • Zhuge Y, Zheng Z-F, Xie M-Q, Li L, Wang F, Gao F. Preparation of liposomal amiodarone and investigation of its cardiomyocyte-targeting skill in cardiac radiofrequency ablation rat mannequin. Int J Nanomed. 2016;11:2359–67.

    Article 
    CAS 

    Google Scholar
     

  • Propranolol. Lancet Lond Engl. 1967;1:939–40.

  • Al-Kassas R, Wen J, Cheng AE-M, Kim AM-J, Liu SSM, Yu J. Transdermal supply of propranolol hydrochloride by way of chitosan nanoparticles dispersed in mucoadhesive gel. Carbohydr Polym. 2016;153:176–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han J, Zhang Y, Wang X, Zhang G, Yu Z, Wang C, et al. Ultrasound-mediated piezoelectric nanoparticle modulation of intrinsic cardiac autonomic nervous system for charge management in atrial fibrillation. Biomater Sci. 2023;11:655–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sagini Ok, Buratta S, Delo F, Pellegrino RM, Giovagnoli S, Urbanelli L, Emiliani C. Drug-induced lysosomal impairment is related to the discharge of extracellular vesicles carrying autophagy markers. Int J Mol Sci. 2021;22(23):12922.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Quinn MP, Dormer KJ, Huizar JF, Nguyen KT, Kaszala Ok, Sima A, et al. Epicardial injection of nanoformulated calcium into cardiac ganglionic plexi suppresses autonomic nerve exercise and postoperative atrial fibrillation. Coronary heart Rhythm. 2019;16:597–605.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen MJ. The cardiac autonomic nervous system: an introduction. Herzschrittmachertherapie Elektrophysiologie. 2021;32:295–301.

    Article 
    PubMed 

    Google Scholar
     

  • Baev AY, Vinokurov AY, Novikova IN, Dremin VV, Potapova EV, Abramov AY. Interplay of mitochondrial calcium and ROS in neurodegeneration. Cells. 2022;11:706.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lilei Yu, Scherlag BJ, Dormer Ok, Nguyen KT, Pope C, Fung Ok-M, et al. Autonomic denervation with magnetic nanoparticles. Circulation. 2010;122:2653–9.

    Article 

    Google Scholar
     

  • Jiang W, Ming Xu, Qin Mu, Zhang D, Shaohui Wu, Liu Xu, et al. Position and mechanism of lncRNA beneath magnetic nanoparticles in atrial autonomic nerve transforming throughout radiofrequency ablation of recurrent atrial fibrillation. Bioengineered. 2022;13:4173–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashtari Ok, Nazari H, Ko H, Tebon P, Akhshik M, Akbari M, et al. Electrically conductive nanomaterials for cardiac tissue engineering. Adv Drug Deliv Rev. 2019;144:162–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murry CE, Robb MacLellan W. Stem cells and the heart-the highway forward. Science. 2020;367:854–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esmaeili H, Patino-Guerrero A, Hasany M, Ansari MO, Memic A, Dolatshahi-Pirouz A, et al. Electroconductive biomaterials for cardiac tissue engineering. Acta Biomater. 2022;139:118–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HE-S. Nanoparticles in tissue engineering: purposes, challenges and prospects. Int J Nanomed. 2018;13:5637–55.

    Article 
    CAS 

    Google Scholar
     

  • Holt E, Lunde PK, Sejersted OM, Christensen G. Electrical stimulation of grownup rat cardiomyocytes in tradition improves contractile properties and is related to altered calcium dealing with. Fundamental Res Cardiol. 1997;92:289–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crowder SW, Liang Y, Rath R, Park AM, Maltais S, Pintauro PN, et al. Poly(ε-caprolactone)–carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells. Nanomed. 2013;8:1763–76.

    Article 
    CAS 

    Google Scholar
     

  • Gorain B, Choudhury H, Pandey M, Kesharwani P, Abeer MM, Tekade RK, et al. Carbon nanotube scaffolds as rising nanoplatform for myocardial tissue regeneration: a evaluate of latest developments and therapeutic implications. Biomed Pharmacother Biomedecine Pharmacother. 2018;104:496–508.

    Article 
    CAS 

    Google Scholar
     

  • Alamdari SG, Alibakhshi A, de la Guardia M, Baradaran B, Mohammadzadeh R, Amini M, et al. Conductive and semiconductive nanocomposite-based hydrogels for cardiac tissue engineering. Adv Healthc Mater. 2022;11:2200526.

    Article 
    CAS 

    Google Scholar
     

  • Saberi A, Jabbari F, Zarrintaj P, Saeb MR, Mozafari M. Electrically conductive supplies: alternatives and challenges in tissue engineering. Biomolecules. 2019;9:448.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong R, Ma PX, Guo B. Conductive biomaterials for muscle tissue engineering. Biomaterials. 2020;229:119584.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin SR, Jung SM, Zalabany M, Kim Ok, Zorlutuna P, Kim SB, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano. 2013;7:2369–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S-C, Whitten J, Kumar J, Bruno FF, Samuelson LA. Self-doped carboxylated polyaniline: impact of hydrogen bonding on the doping of polymers. Macromol Res. 2009;17:631–7.

    Article 
    CAS 

    Google Scholar
     

  • Zhang C, Hsieh M-H, Tune-Yi Wu, Li S-H, Jun Wu, Liu S-M, et al. A self-doping conductive polymer hydrogel that may restore electrical impulse propagation at myocardial infarct to forestall cardiac arrhythmia and protect ventricular perform. Biomaterials. 2020;231:119672.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roshanbinfar Ok, Vogt L, Greber B, Diecke S, Boccaccini AR, Scheibel T, et al. Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues. Adv Funct Mater. 2018;28:1803951.

    Article 

    Google Scholar
     

  • Roshanbinfar Ok, Mohammadi Z, Mesgar AS-M, Dehghan MM, Oommen OP, Hilborn J, et al. Carbon nanotube doped pericardial matrix derived electroconductive biohybrid hydrogel for cardiac tissue engineering. Biomater Sci. 2019;7:3906–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith AST, Yoo H, Yi H, Ahn EH, Lee JH, Shao G, et al. Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering. Chem Commun Camb Engl. 2017;53:7412–5.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Jinfu Lu, Guisen Xu, Wei J, Zhang Z, Li X. Tuning the conductivity and internal construction of electrospun fibers to advertise cardiomyocyte elongation and synchronous beating. Mater Sci Eng C. 2016;69:865–74.

    Article 
    CAS 

    Google Scholar
     

  • Shevach M, Fleischer S, Shapira A, Dvir T. Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering. Nano Lett. 2014;14:5792–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu H, Zhao H, Huang C, Du Y. Mechanically and electrically enhanced CNT-collagen hydrogels as potential scaffolds for engineered cardiac constructs. ACS Biomater Sci Eng. 2017;3:3017–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong R, Pang Y, Su Y, Zhu X. Supramolecular hydrogels: synthesis, properties and their biomedical purposes. Biomater Sci. 2015;3:937–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eng G, Lee BW, Protas L, Gagliardi M, Brown Ok, Kass RS, et al. Autonomous beating charge adaptation in human stem cell-derived cardiomyocytes. Nat Commun. 2016;7:10312.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovasc Res. 2000;46:250–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vunjak Novakovic G, Eschenhagen T, Mummery C. Myocardial tissue engineering: in vitro fashions. Chilly Spring Harb Perspect Med. 2014;4:a014076.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menasché P, Hagège AA, Vilquin J-T, Desnos M, Abergel E, Pouzet B, et al. Autologous skeletal myoblast transplantation for extreme postinfarction left ventricular dysfunction. J Am Coll Cardiol. 2003;41:1078–83.

    Article 
    PubMed 

    Google Scholar
     

  • Li Y, Wei L, Lan L, Gao Y, Zhang Q, Dawit H, et al. Conductive biomaterials for cardiac restore: a evaluate. Acta Biomater. 2022;139:157–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM. Survival and performance of bioengineered cardiac grafts. Circulation. 1999;100:II63-69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmermann W-H, Melnychenko I, Wasmeier G, Didié M, Naito H, Nixdorff U, et al. 91Article: engineered coronary heart tissue grafts enhance systolic and diastolic perform in infarcted rat hearts. Nat Med. 2006;12:452–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe Ok, et al. Fabrication of pulsatile cardiac tissue grafts utilizing a novel third-dimensional cell sheet manipulation approach and temperature-responsive cell tradition surfaces. Circ Res. 2002;90:e40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmermann W-H, Didié M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, et al. Cardiac grafting of engineered coronary heart tissue in syngenic rats. Circulation. 2002;106:I151-157.

    Article 
    PubMed 

    Google Scholar
     

  • Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, et al. Bioengineered cardiac grafts: a brand new strategy to restore the infarcted myocardium? Circulation. 2000;102:III56-61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka Ok, Hao H, et al. Monolayered mesenchymal stem cells restore scarred myocardium after myocardial infarction. Nat Med. 2006;12:459–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawamura M, Miyagawa S, Miki Ok, Saito A, Fukushima S, Higuchi T, et al. Feasibility, security, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy mannequin. Circulation. 2012;126:S29-37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dvir T, Kedem A, Ruvinov E, Levy O, Freeman I, Landa N, et al. Prevascularization of cardiac patch on the omentum improves its therapeutic end result. Proc Natl Acad Sci USA. 2009;106:14990–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bursac N, Lavatory Y, Leong Ok, Tung L. Novel anisotropic engineered cardiac tissues: research {of electrical} propagation. Biochem Biophys Res Commun. 2007;361:847–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, et al. Nanowired three-dimensional cardiac patches. Nat Nanotechnol. 2011;6:720–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing M. Nanotechnology and nanomaterials for cardiac restore. In: Li R-Ok, Weisel RD, editors. Card regen restore. Sawston: Woodhead Publishing; 2014. p. 3–16.

    Chapter 

    Google Scholar
     

  • He S, Tune H, Wu J, Li S-H, Weisel RD, Sung H-W, et al. Preservation of conductive propagation after surgical restore of cardiac defects with a bio-engineered conductive patch. J Coronary heart Lung Transplant. 2018;37:912–24.

    Article 
    PubMed 

    Google Scholar
     

  • Chen S, Hsieh M-H, Li S-H, Jun Wu, Weisel RD, Chang Y, et al. a conductive cell-delivery assemble as a bioengineered patch that may enhance electrical propagation and synchronize cardiomyocyte contraction for coronary heart restore. J Management Launch Off J Management Launch Soc. 2020;320:73–82.

    Article 
    CAS 

    Google Scholar
     

  • Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: in direction of a wise biomaterial for tissue engineering. Acta Biomater. 2014;10:2341–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liau B, Zhang D, Bursac N. Useful cardiac tissue engineering. Regen Med. 2012;7:187–206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mawad D, Mansfield C, Lauto A, Perbellini F, Nelson GW, Tonkin J, et al. A conducting polymer with enhanced digital stability utilized in cardiac fashions. Sci Adv. 2016;2:e1601007.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedrotty DM, Kuzmenko V, Karabulut E, Sugrue AM, Livia C, Vaidya VR, et al. Three-dimensional printed biopatches with conductive ink facilitate cardiac conduction when utilized to disrupted myocardium. Circ Arrhythm Electrophysiol. 2019;12:e006920.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao G, Feng Y, Xue L, Cui M, Zhang Q, Xu F, et al. Anisotropic conductive lowered graphene oxide/silk matrices promote post-infarction myocardial perform by restoring electrical integrity. Acta Biomater. 2022;139:190–203.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vunjak-Novakovic G, Tandon N, Godier A, Maidhof R, Marsano A, Martens TP, et al. Challenges in cardiac tissue engineering. Tissue Eng Half B Rev. 2010;16:169–87.

    Article 
    PubMed 

    Google Scholar
     

  • Au HTH, Cheng I, Chowdhury MF, Radisic M. Interactive results of floor topography and pulsatile electrical subject stimulation on orientation and elongation of fibroblasts and cardiomyocytes. Biomaterials. 2007;28:4277–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maidhof R, Tandon N, Lee EJ, Luo J, Duan Y, Yeager Ok, et al. Biomimetic perfusion and electrical stimulation utilized in live performance improved the meeting of engineered cardiac tissue. J Tissue Eng Regen Med. 2012;6:e12-23.

    Article 
    PubMed 

    Google Scholar
     

  • Guan J, Wang F, Li Z, Chen J, Guo X, Liao J, et al. The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium construction and biomechanics. Biomaterials. 2011;32:5568–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahadian S, Khademhosseini A. Sensible scaffolds in tissue regeneration. Regen Biomater. 2018;5:125–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, et al. Nanowired three dimensional cardiac patches. Nat Nanotechnol. 2011;6:720–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren J, Xu Q, Chen X, Li W, Guo Ok, Zhao Y, et al. Superaligned carbon nanotubes information oriented cell development and promote electrophysiological homogeneity for artificial cardiac tissues. Adv Mater. 2017;29:1702713.

    Article 

    Google Scholar
     

  • Pok S, Vitale F, Eichmann SL, Benavides OM, Pasquali M, Jacot JG. Biocompatible carbon nanotube-chitosan scaffold matching {the electrical} conductivity of the guts. ACS Nano. 2014;8:9822–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahshid Kharaziha S, Shin R, Nikkhah M, Topkaya SN, Masoumi N, Annabi N, et al. Robust and versatile CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials. 2014;35:7346–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahadian S, Davenport Huyer L, Estili M, Yee B, Smith N, Xu Z, et al. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater. 2017;52:81–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho S, Discher DE, Leong KW, Vunjak-Novakovic G, Joseph CWu. Challenges and alternatives for the subsequent era of cardiovascular tissue engineering. Nat Strategies. 2022;19:1064–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malima A, Siavoshi S, Musacchio T, Upponi J, Yilmaz C, Somu S, et al. Extremely delicate microscale in vivo sensor enabled by electrophoretic meeting of nanoparticles for a number of biomarker detection. Lab Chip. 2012;12:4748–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polymers in biosensor units for cardiovascular purposes. Curr Opin Biomed Eng. 2020;13:69–75

  • Latest progress on the delicate detection of heart problems markers by electrochemical-based biosensors. J Pharm Biomed Anal. 2018;159:406–24.

  • Feiner R, Engel L, Fleischer S, Malki M, Gal I, Shapira A, et al. Engineered hybrid cardiac patches with multifunctional electronics for on-line monitoring and regulation of tissue perform. Nat Mater. 2016;15:679–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei Y-M, Xiao M-M, Li Y-T, Xu L, Zhang H, Zhang Z-Y, et al. Detection of coronary heart failure-related biomarker in entire blood with graphene subject impact transistor biosensor. Biosens Bioelectron. 2017;91:1–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malhotra N, Lee J-S, Liman RAD, Ruallo JMS, Villaflores OB, Ger T-R, et al. Potential toxicity of iron oxide magnetic nanoparticles: a evaluate. Mol Basel Switz. 2020;25:3159.

    CAS 

    Google Scholar
     

  • Wu T, Tang M. Assessment of the consequences of manufactured nanoparticles on mammalian goal organs. J Appl Toxicol JAT. 2018;38:25–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y-N, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle–liver interactions: mobile uptake and hepatobiliary elimination. J Management Launch. 2016;240:332–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boey A, Ho HK. All roads result in the liver: steel nanoparticles and their implications for liver well being. Small Weinh Bergstr Ger. 2020;16:e2000153.

    Article 

    Google Scholar
     

  • Bostan HB, Rezaee R, Valokala MG, Tsarouhas Ok, Golokhvast Ok, Tsatsakis AM, et al. Cardiotoxicity of nano-particles. Life Sci. 2016;165:91–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, et al. Gold nanoparticles of diameter 1.4 nm set off necrosis by oxidative stress and mitochondrial harm. Small Weinh Bergstr Ger. 2009;5:2067–76.

    Article 
    CAS 

    Google Scholar
     

  • Park J, Kim B, Han J, Oh J, Park S, Ryu S, et al. Graphene oxide flakes as a mobile adhesive: prevention of reactive oxygen species mediated loss of life of implanted cells for cardiac restore. ACS Nano. 2015;9:4987–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, et al. Artificial nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like capabilities. Nat Nanotechnol. 2013;8:61–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hussain Z, Thu HE, Elsayed I, Abourehab MAS, Khan S, Sohail M, et al. Nano-scaled supplies might induce extreme neurotoxicity upon power publicity to mind tissues: a crucial appraisal and up to date updates on predisposing components, underlying mechanism, and future prospects. J Management Launch Off J Management Launch Soc. 2020;328:873–94.

    Article 
    CAS 

    Google Scholar
     

  • Foulkes R, Man E, Thind J, Yeung S, Pleasure A, Hoskins C. The regulation of nanomaterials and nanomedicines for scientific utility: present and future views. Biomater Sci. 2020;8:4653–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu G, Li P, Feng H, Zhang X, Chu PK. Engineering and functionalization of biomaterials through floor modification. J Mater Chem B. 2015;3:2024–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carnovale C, Bryant G, Shukla R, Bansal V. Measurement, form and floor chemistry of nano-gold dictate its mobile interactions, uptake and toxicity. Prog Mater Sci. 2016;83:152–90.

    Article 
    CAS 

    Google Scholar
     

  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a technique for bettering nanoparticle-based drug and gene supply. Adv Drug Deliv Rev. 2016;99:28–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS. Stealth coating of nanoparticles in drug-delivery programs. Nanomaterials. 2020;10:787.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kedmi R, Veiga N, Ramishetti S, Goldsmith M, Rosenblum D, Dammes N, et al. A modular platform for focused RNAi therapeutics. Nat Nanotechnol. 2018;13:214–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anne G. Early Consciousness and Motion System for Superior Supplies (Early4AdMa): Pre-regulatory and anticipatory danger governance device to Superior Supplies.

  • Peláez EC, Estevez M-C, Portela A, Salvador J-P, Marco M-P, Lechuga LM. Nanoplasmonic biosensor system for the monitoring of acenocoumarol therapeutic drug in plasma. Biosens Bioelectron. 2018;119:149–55.

    Article 
    PubMed 

    Google Scholar
     

  • Lin Z, Kireev D, Liu N, Gupta S, LaPiano J, Obaid SN, et al. Graphene biointerface for cardiac arrhythmia analysis and remedy. Adv Mater Deerfield Seaside Fla. 2023;35:e2212190.

    Article 

    Google Scholar
     

  • Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene remedy. Nat Rev Genet. 2020;21:255–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen HX, Wu T, Wants D, Zhang H, Perelli RM, DeLuca S, et al. Engineered bacterial voltage-gated sodium channel platform for cardiac gene remedy. Nat Commun. 2022;13:620.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *