Developments in using two-dimensional nanomaterials for enhancing pores and skin wound therapeutic: a evaluation of present observe | Journal of Nanobiotechnology

  • Li R, Liu Ok, Huang X, Li D, Ding J, Liu B, Chen X. Bioactive supplies promote Wound Therapeutic by means of Modulation of Cell behaviors. Adv Sci 2022, 9.

  • Gao C, Zhang L, Wang J, Jin M, Tang Q, Chen Z, Cheng Y, Yang R, Zhao G. Electrospun nanofibers promote wound therapeutic: theories, methods, and views. J Mater Chem B. 2021;9:3106–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Pores and skin Wound Therapeutic: an replace on the present data and ideas. Eur Surg Res. 2017;58:81–94.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Li L, Yu J, Zhang F, Shi J, Li M, Liu J, Li H, Gao J, Wu Y. Autophagy-modulated Biomaterial: a Strong Weapon for modulating the Wound Surroundings to advertise pores and skin Wound Therapeutic. Int J Nanomed. 2023;18:2567–88.

    Article 
    CAS 

    Google Scholar
     

  • Krishnaswami V, Raju NS, Alagarsamy S, Kandasamy R. Novel nanocarriers for the therapy of Wound Therapeutic. Curr Pharm Design. 2020;26:4591–600.

    Article 
    CAS 

    Google Scholar
     

  • Singer AJ. Therapeutic mechanisms in cutaneous wounds: tipping the steadiness. Tissue Eng Half B: Evaluations. 2022;28:1151–67.

    Article 
    CAS 

    Google Scholar
     

  • Dalisson B, Barralet J. Bioinorganics and Wound Therapeutic. Adv Healthc Mater 2019, 8.

  • Kushwaha A, Goswami L, Kim BS. Nanomaterial-based remedy for Wound Therapeutic. Nanomaterials 2022, 12.

  • Vivcharenko V, Trzaskowska M, Przekora A. Wound dressing modifications for Accelerated Therapeutic of contaminated wounds. Int J Mol Sci 2023, 24.

  • Fernández-Guarino M, Hernández-Bule ML, Bacci S. Mobile and molecular processes in Wound Therapeutic. Biomedicines 2023, 11.

  • Park H, Kim J-U, Kim S, Hwang NS, Kim HD. Sprayable Ti3C2 MXene hydrogel for wound therapeutic and drug launch system. Mater Immediately Bio 2023.

  • Dong R, Guo B. Good wound dressings for wound therapeutic. Nano Immediately 2021, 41.

  • Shariati A, Hosseini SM, Chegini Z, Seifalian A, Arabestani MR. Graphene-based supplies for inhibition of wound an infection and accelerating Wound Therapeutic. Biomed Pharmacother 2023, 158.

  • Hu T, Mei X, Wang Y, Weng X, Liang R, Wei M. Two-dimensional nanomaterials: fascinating supplies in biomedical discipline. Sci Bull. 2019;64:1707–27.

    Article 
    CAS 

    Google Scholar
     

  • Setyawan D, Amrillah T, Abdullah CAC, Ilhami FB, Dewi DMM, Mumtazah Z, Oktafiani A, Adila FP, Putra MFH. Crafting two-dimensional supplies for distinction brokers, drug, and warmth supply purposes by means of inexperienced applied sciences. J Drug Goal. 2023;31:369–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen EP, de Carvalho Castro Silva C, Merkoçi A. Current development in biomedical purposes on the floor of two-dimensional supplies: from biosensing to tissue engineering. Nanoscale. 2020;12:19043–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Li Y, Zhao L, Qi Z, Gou J, Zhang S, Zhang JZ. Current advances in ultrathin two-dimensional supplies and biomedical purposes for reactive oxygen species era and scavenging. Nanoscale. 2020;12:19516–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chimene D, Alge DL, Gaharwar AK. Two-dimensional nanomaterials for Biomedical Functions: rising developments and Future prospects. Adv Mater. 2015;27:7261–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saeed S, Martins-Inexperienced M. Animal fashions for the examine of acute cutaneous wound therapeutic. Wound Restore Regeneration. 2022;31:6–16.

    Article 
    PubMed 

    Google Scholar
     

  • Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Pores and skin wound therapeutic course of and New Rising applied sciences for pores and skin Wound Care and Regeneration. Pharmaceutics 2020, 12.

  • Yang X, Xiao X, Wang L, Ao Y, Music Y, Wang H, Wang H. Software of antimicrobial medicine in perioperative surgical incision. Ann Clin Microbiol Antimicrob 2018, 17.

  • Goodwin J, Womack P, Moore B, Laureano Phillips J, Duane T. Incision classification accuracy: do residents know how you can classify them? Surg Infect. 2017;18:874–8.

    Article 

    Google Scholar
     

  • Yang Y, Zhao X, Yu J, Chen X, Wang R, Zhang M, Zhang Q, Zhang Y, Wang S, Cheng Y. Bioactive skin-mimicking hydrogel band-aids for diabetic wound therapeutic and infectious pores and skin incision therapy. Bioactive Mater. 2021;6:3962–75.

    Article 
    CAS 

    Google Scholar
     

  • Pathak PC, Gadgoli CH. Exploring the efficacy of panchavalkal extract and Zinc-Copper Bhasma in selling wound therapeutic in incision and excision wound fashions within the rat. J Ethnopharmacol 2024, 320.

  • Pores and skin graft utilizing MatriDerm® for plantar defects after excision of pores and skin most cancers. Most cancers Administration and Analysis 2019, Quantity 11:2947–2950.

  • He S, Shi D, Han Z, Dong Z, Xie Y, Zhang F, Zeng W, Yi Q. Heparinized silk fibroin hydrogels loading FGF1 promote the wound therapeutic in rats with full-thickness pores and skin excision. Biomed Eng On-line 2019, 18.

  • Panagiotou D, Filidou E, Gaitanidou M, Tarapatzi G, Spathakis M, Kandilogiannakis L, Stavrou G, Arvanitidis Ok, Tsetis JK, Gionga P et al. Function of Lactiplantibacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58 and Bifidobacterium longum UBBL-64 within the Wound Therapeutic Means of the Excisional Pores and skin. Vitamins 2023, 15.

  • Yampolsky M, Bachelet I, Fuchs Y. Reproducible technique for excisional skin-wound-healing research in mice. Nat Protoc 2023.

  • He Y, Luo Ok, Hu X, Liu J, Hao M, Li Y, Xia X, Lü X, Shi C. Antibacterial Mechanism of Shikonin in opposition to Vibrio vulnificus and its therapeutic potential on contaminated mice with full-thickness excised pores and skin. Foodborne Pathog Dis. 2023;20:67–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moysidis M, Stavrou G, Cheva A, Abba Deka I, Tsetis JK, Birba V, Kapoukranidou D, Ioannidis A, Tsaousi G, Kotzampassi Ok. The three-D configuration of excisional pores and skin wound therapeutic after topical probiotic utility. Harm. 2022;53:1385–93.

    Article 
    PubMed 

    Google Scholar
     

  • Lintel H, Abbas DB, Lavin CV, Griffin M, Guo JL, Guardino N, Churukian A, Gurtner GC, Momeni A, Longaker MT, Wan DC. Transdermal deferoxamine administration improves excisional wound therapeutic in chronically irradiated murine pores and skin. J Translational Med 2022, 20.

  • Barbalho GN, Matos BN, Espirito Santo MEL, Silva VRC, Chaves SB, Gelfuso GM, Cunha-Filho M, Gratieri T. In vitro pores and skin mannequin for the analysis of burn therapeutic drug supply programs. J Drug Deliv Sci Technol 2021, 62.

  • Nunes PS, Rabelo AS, Souza JCCd, Santana BV, da Silva TMM, Serafini MR, dos Passos Menezes P, dos Santos Lima B, Cardoso JC, Alves JCS, et al. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn therapeutic in a porcine mannequin. Int J Pharm. 2016;513:473–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simões TMS, de Alencar Fernandes Neto J, Nonaka CFW, de Vasconcelos Catão MHC. Results of photobiomodulation remedy with crimson LED on inflammatory cells throughout the therapeutic of pores and skin burns. Lasers Med Sci. 2022;37:2817–22.

    Article 
    PubMed 

    Google Scholar
     

  • Fiorentini F, Suarato G, Summa M, Miele D, Sandri G, Bertorelli R, Athanassiou A. Plant-Based mostly, hydrogel-like microfibers as an antioxidant platform for pores and skin burn Therapeutic. ACS Appl Bio Mater. 2023;6:3103–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabello-Arista B, Melgarejo-Ramírez Y, Retana-Flores A, Martínez-López V, Márquez-Gutiérrez E, Almanza-Pérez J, Lecona H, Reyes-Frías ML, Ibarra C, Martínez-Pardo ME et al. Results of mesenchymal stem cell tradition on radio sterilized human amnion or radio sterilized pig pores and skin in burn wound therapeutic. Cell Tissue Banking 2022.

  • Huangfu Y, Li S, Deng L, Zhang J, Huang P, Feng Z, Kong D, Wang W, Dong A. Pores and skin-Adaptable, long-lasting moisture, and temperature-tolerant hydrogel dressings for accelerating burn Wound Therapeutic with out secondary injury. ACS Appl Mater Interfaces. 2021;13:59695–707.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan MA, Hussain Z, Ali S, Qamar Z, Imran M, Hafeez FY. Fabrication of Electrospun Probiotic functionalized nanocomposite scaffolds for an infection management and Dermal Burn Therapeutic in a mice Mannequin. ACS Biomaterials Sci Eng. 2019;5:6109–16.

    Article 
    CAS 

    Google Scholar
     

  • Nozari M, Gholizadeh M, Zahiri Oghani F, Tahvildari Ok. Research on novel chitosan/alginate and chitosan/bentonite versatile movies included with ZnO nano particles for accelerating dermal burn therapeutic: in vivo and in vitro analysis. Int J Biol Macromol. 2021;184:235–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Y-Ok, Cheng N-C, Cheng C-M. Biofilms in Power wounds: Pathogenesis and prognosis. Tendencies Biotechnol. 2019;37:505–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuentes I, Yubero MJ, Morandé P, Varela C, Oróstica Ok, Acevedo F, Rebolledo-Jaramillo B, Arancibia E, Porte L, Palisson F. Longitudinal examine of wound therapeutic standing and bacterial colonisation of Staphylococcus aureus and Corynebacterium diphtheriae in epidermolysis bullosa sufferers. Int Wound J. 2022;20:774–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi M, Qin Y, Wang L, Zhang J. The protecting position of resveratrol in diabetic wound therapeutic. Phytother Res. 2023;37:5193–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dixon D, Edmonds M. Managing Diabetic Foot Ulcers: Pharmacotherapy for Wound Therapeutic. Medication. 2020;81:29–56.

    Article 

    Google Scholar
     

  • Ezhilarasu H, Vishalli D, Dheen ST, Bay B-H, Srinivasan DK. Nanoparticle-based Therapeutic Method for Diabetic Wound Therapeutic. Nanomaterials 2020, 10.

  • Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and therapy of impaired Wound Therapeutic in Diabetes Mellitus: New insights. Adv Remedy. 2014;31:817–36.

    Article 
    CAS 

    Google Scholar
     

  • Yampolsky M, Bachelet I, Fuchs Y. Reproducible technique for excisional skin-wound-healing research in mice. Nat Protoc. 2023;19:184–206.

    Article 
    PubMed 

    Google Scholar
     

  • Bhattarai-Kline S, Lear SK, Shipman SL. One-step information storage in mobile DNA. Nat Chem Biol. 2021;17:232–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eming SA, Murray PJ, Pearce EJ. Metabolic orchestration of the wound therapeutic response. Cell Metabol. 2021;33:1726–43.

    Article 
    CAS 

    Google Scholar
     

  • Oliveira A, Simões S, Ascenso A, Reis CP. Therapeutic advances in wound therapeutic. J Dermatological Deal with. 2020;33:2–22.

    Article 

    Google Scholar
     

  • Maleki A, He J, Bochani S, Nosrati V, Shahbazi M-A, Guo B. Multifunctional photoactive hydrogels for Wound Therapeutic Acceleration. ACS Nano. 2021;15:18895–930.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Chen H, Fang Y, Wu J. Hydrogel Mixed with Phototherapy in Wound Therapeutic. Adv Healthc Mater 2022, 11.

  • Zhang H, Liu S, Yang X, Chen N, Pang F, Chen Z, Wang T, Zhou J, Ren F, Xu X, Li T. LED phototherapy with gelatin sponge promotes Wound Therapeutic in mice. Photochem Photobiol. 2017;94:179–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang M-C, Guo J-X, Chen L-J, Zhao X. Acrylate-functionalized porphyrin-covalent natural framework for bacterial-targeted and reaction-enhanced synergistic phototherapy/chemotherapy towards sterilization and wound therapeutic. Biomaterials Sci. 2023;11:1776–84.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Qiu L, Wang C, Gao Z, Zhou S, Cui P, Jiang P, Hu H, Ni X, Du X, et al. Nanodot-doped peptide hydrogels for antibacterial phototherapy and wound therapeutic. Biomaterials Sci. 2022;10:654–64.

    Article 
    CAS 

    Google Scholar
     

  • Razack SA, Lee Y, Shin H, Duraiarasan S, Chun B-S, Kang HW. Cellulose nanofibrils strengthened chitosan-gelatin primarily based hydrogel loaded with nanoemulsion of oregano important oil for diabetic wound therapeutic assisted by low stage laser remedy. Int J Biol Macromol. 2023;226:220–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Zhu G, Xu W, Wang M, Xie Y, Bao Z, Qi M, Gao M, Li C. Development of mPt/ICG-αA nanoparticles with enhanced phototherapeutic actions for multidrug-resistant bacterial eradication and wound therapeutic. Nanoscale. 2023;15:13617–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oyebode O, Houreld NN, Abrahamse H. Photobiomodulation in diabetic wound therapeutic: a evaluation of crimson and near-infrared wavelength purposes. Cell Biochem Funct. 2021;39:596–612.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar B, Ye Z, Zhang M, Music Q, Chu X, Gao S, Zhang Q, Jiang C, Zhou N, Yao C, Shen J. Mild-activated biodegradable Covalent Natural Framework-Built-in Heterojunction for Photodynamic, Photothermal, and gaseous remedy of power wound an infection. ACS Appl Mater Interfaces. 2021;13:42396–410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayat M, Albright R, Hamblin MR, Chien S. Impression of Blue Mild Remedy on Wound Therapeutic in Preclinical and scientific topics: a scientific evaluation. J Lasers Med Sci 2022, 13.

  • Tian Q, Yang Y, Li A, Chen Y, Li Y, Solar L, Shang L, Gao L, Zhang L. Ferrihydrite nanoparticles because the photosensitizer increase microbial contaminated wound therapeutic with blue gentle. Nanoscale. 2021;13:19123–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verdes M, Mace Ok, Margetts L, Cartmell S. Standing and challenges {of electrical} stimulation use in power wound therapeutic. Curr Opin Biotechnol 2022, 75.

  • Tai G, Tai M, Zhao M. Electrically stimulated cell migration and its contribution to wound therapeutic. Burns Trauma 2018, 6.

  • Ferreira CL, Neves Jardini MA, Moretto Nunes CM, Bernardo DV, Viana Casarin RC, dos Santos Gedraite E, Mathias MA, Liu F, Mendonça G. Silveira Mendonça DB, Santamaria MP: electrical stimulation enhances early palatal wound therapeutic in mice. Arch Oral Biol 2021, 122.

  • Rabbani M, Rahman E, Powner MB, Triantis IF. Making sense of Electrical Stimulation: a Meta-analysis for Wound Therapeutic. Ann Biomed Eng 2023.

  • Khouri C, Kotzki S, Roustit M, Blaise S, Gueyffier F, Cracowski J-L. Hierarchical analysis {of electrical} stimulation protocols for power wound therapeutic: an impact dimension meta-analysis. Wound Restore Regeneration. 2017;25:883–91.

    Article 
    PubMed 

    Google Scholar
     

  • Liao W, Yang D, Xu Z, Zhao L, Mu C, Li D, Ge L. Antibacterial Collagen-based nanocomposite dressings for selling contaminated Wound Therapeutic. Adv Healthc Mater 2023, 12.

  • Solar L, Li L, Wang Y, Li M, Xu S, Zhang C. A collagen-based bi-layered composite dressing for accelerated wound therapeutic. J Tissue Viability. 2022;31:180–9.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng Y, Li Y, Huang S, Yu F, Bei Y, Zhang Y, Tang J, Huang Y, Xiang Q. Hybrid freeze-dried dressings composed of epidermal progress issue and recombinant Human-Like Collagen Improve Cutaneous Wound Therapeutic in rats. Entrance Bioeng Biotechnol 2020, 8.

  • Kou Z, Li B, Aierken A, Tan N, Li C, Han M, Jing Y, Li N, Zhang S, Peng S et al. Mesenchymal stem cells pretreated with collagen promote pores and skin Wound-Therapeutic. Int J Mol Sci 2023, 24.

  • Shen X-R, Chen X-L, Xie H-X, He Y, Chen W, Luo Q, Yuan W-H, Tang X, Hou D-Y, Jiang D-W, Wang Q-R. Useful results of a novel shark-skin collagen dressing for the promotion of seawater immersion wound therapeutic. Navy Med Res 2017, 4.

  • Pang C, Fan KS, Wei L, Kolar MK. Gene remedy in wound therapeutic utilizing nanotechnology. Wound Restore Regeneration. 2020;29:225–39.

    Article 
    PubMed 

    Google Scholar
     

  • Catanzano O, Quaglia F, Boateng JS. Wound dressings as progress issue supply platforms for power wound therapeutic. Skilled Opin Drug Deliv. 2021;18:737–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Legrand JMD, Martino MM. Progress issue and cytokine Supply programs for Wound Therapeutic. Chilly Spring Harb Perspect Biol 2022, 14.

  • Rabbani PS, Zhou A, Borab ZM, Frezzo JA, Srivastava N, Extra HT, Rifkin WJ, David JA, Berens SJ, Chen R, et al. Novel lipoproteoplex delivers Keap1 siRNA primarily based gene remedy to speed up diabetic wound therapeutic. Biomaterials. 2017;132:1–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bailore NN, Sarojini BK, Harshitha KR. Fabrication and willpower of the Solar Safety Issue and Ultraviolet Safety Issue for Piscean Collagen/Bischalcone By-product (B1) Composite movies with wide-range UV shielding. ACS Omega. 2022;7:27876–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhoke NR, Kaushik Ok, Das A. Cxcr6-Based mostly mesenchymal stem cell gene remedy potentiates pores and skin regeneration in Murine Diabetic wounds. Mol Ther. 2020;28:1314–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, Min D, Guo G, Liao X, Fu Z. Experimental examine of epidermal progress issue and acidic fibroblast progress issue within the therapy of diabetic foot wounds. Experimental Therapeutic Med 2018.

  • Willy C, Agarwal A, Andersen CA, Santis GD, Gabriel A, Grauhan O, Guerra OM, Lipsky BA, Malas MB, Mathiesen LL, et al. Closed incision destructive strain remedy: worldwide multidisciplinary consensus suggestions. Int Wound J. 2016;14:385–98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kantak NA, Mistry R, Varon DE, Halvorson EG. Damaging strain wound remedy for Burns. Clin Plast Surg. 2017;44:671–7.

    Article 
    PubMed 

    Google Scholar
     

  • Nuhiji E. Tendencies and Innovation in Damaging Stress Wound Remedy: A Evaluate of Burn Wound Administration. Advances in Wound Care 2023.

  • Zwanenburg PR, Tol BT, de Vries FEE, Boermeester MA. Incisional destructive strain Wound Remedy for Surgical Website an infection Prophylaxis within the post-antibiotic period. Surg Infect. 2018;19:821–30.

    Article 

    Google Scholar
     

  • Qiu X, Luo H, Huang G. Roles of destructive strain wound remedy for scar revision. Entrance Physiol 2023, 14.

  • Qiu X, Wu Y, Zhang D, Zhang H, Yu A, Li Z. Roles of Oxidative Stress and Raftlin in Wound Therapeutic Below Damaging-Stress Wound Remedy. Scientific, Beauty and Investigational Dermatology 2021, Quantity 14:1745–1753.

  • Wu M, Liu Q, Yu Z, Karvar M, Aoki S, Hamaguchi R, Ma C, Orgill DP, Panayi AC. Damaging-pressure wound remedy induces Lymphangiogenesis in Murine Diabetic Wound Therapeutic. Plast Reconstr Surg. 2022;151:779–90.

    Article 
    PubMed 

    Google Scholar
     

  • Xu Ok, Deng S, Zhu Y, Yang W, Chen W, Huang L, Zhang C, Li M, Ao L, Jiang Y et al. Platelet Wealthy plasma loaded multifunctional hydrogel accelerates Diabetic Wound Therapeutic by way of regulating the constantly irregular microenvironments. Adv Healthc Mater 2023, 12.

  • Zhou S, Li L, Chen C, Chen Y, Zhou L, Zhou FH, Dong J, Wang L. Injectable gelatin microspheres loaded with platelet wealthy plasma enhance wound therapeutic by regulating early irritation. Int J Med Sci. 2021;18:1910–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lengthy DW, Johnson NR, Jeffries EM, Hara H, Wang Y. Managed supply of platelet-derived proteins enhances porcine wound therapeutic. J Managed Launch. 2017;253:73–81.

    Article 
    CAS 

    Google Scholar
     

  • Giuliani C. The flavonoid quercetin induces AP-1 activation in FRTL-5 thyroid cells. Antioxidants 2019, 8.

  • Liao X, Liang J-X, Li S-H, Huang S, Yan J-X, Xiao L-L, Music J-X, Liu H-W. Allogeneic platelet-rich plasma remedy as an efficient and protected adjuvant methodology for power wounds. J Surg Res. 2020;246:284–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murali A, Lokhande G, Deo KA, Brokesh A, Gaharwar AK. Rising 2D nanomaterials for biomedical purposes. Mater Immediately. 2021;50:276–302.

    Article 
    CAS 

    Google Scholar
     

  • Hu H, Zavabeti A, Quan H, Zhu W, Wei H, Chen D, Ou JZ. Current advances in two-dimensional transition steel dichalcogenides for organic sensing. Biosens Bioelectron 2019, 142.

  • Derakhshi M, Daemi S, Shahini P, Habibzadeh A, Mostafavi E, Ashkarran AA. Two-Dimensional nanomaterials past Graphene for Biomedical Functions. J Funct Biomaterials 2022, 13.

  • Solar W, Wu FG. Two-Dimensional supplies for antimicrobial purposes: Graphene supplies and Past. Chem – Asian J. 2018;13:3378–410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ansari MO, Gauthaman Ok, Essa A, Bencherif SA, Memic A. Graphene and Graphene-based supplies in Biomedical Functions. Curr Med Chem. 2019;26:6834–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raslan A, Saenz del Burgo L, Ciriza J, Pedraz JL. Graphene oxide and decreased graphene oxide-based scaffolds in regenerative medication. Int J Pharm 2020, 580.

  • Raja IS, Jang HJ, Kang MS, Kim KS, Choi YS, Jeon J-R, Lee JH, Han D-W. Function of Graphene Household Nanomaterials in Pores and skin Wound Therapeutic and Regeneration. In Multifaceted Biomedical Functions of Graphene. 2022: 89–105: Advances in Experimental Drugs and Biology].

  • Jaleel JA, Sruthi S, Pramod Ok. Reinforcing nanomedicine utilizing graphene household nanomaterials. J Managed Launch. 2017;255:218–30.

    Article 
    CAS 

    Google Scholar
     

  • Gurunathan S, Kim J-H. Synthesis, toxicity, biocompatibility, and biomedical purposes of graphene and graphene-related supplies. Int J Nanomed 2016.

  • Tu YS, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu ZR, Huang Q, Fan CH, Fang HP, Zhou RH. Damaging extraction of phospholipids from Escherichia coli membranes by graphene nanosheetsvol 8, pg 594, (2013). Nature Nanotechnology 2013, 8.

  • da Luz F, Garcia Filho F, del-Río M, Nascimento L, Pinheiro W, Monteiro S. Graphene-Integrated Pure Fiber Polymer composites: a primary overview. Polymers 2020, 12.

  • Qiu Y, Wang Z, Owens ACE, Kulaots I, Chen Y, Kane AB, Damage RH. Antioxidant chemistry of graphene-based supplies and its position in oxidation safety know-how. Nanoscale. 2014;6:11744–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Mu F, Wang Y, Zhao H. Graphene and Graphene-based nanomaterials for DNA detection: a evaluation. Molecules 2018, 23.

  • Losada-Garcia N, Berenguer-Murcia A, Cazorla-Amorós D, Palomo J. Environment friendly manufacturing of Multi-layer Graphene from Graphite Flakes in Water by lipase-graphene sheets conjugation. Nanomaterials 2019, 9.

  • Ali IH, Ouf A, Elshishiny F, Taskin MB, Music J, Dong M, Chen M, Siam R, Mamdouh W. Antimicrobial and Wound-Therapeutic actions of Graphene-Bolstered Electrospun Chitosan/Gelatin nanofibrous nanocomposite scaffolds. ACS Omega. 2022;7:1838–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du S, Liu B, Li Z, Tan H, Qi W, Liu T, Qiang S, Zhang T, Music F, Chen X, et al. A Nanoporous Graphene/Nitrocellulose Membrane Useful to Wound Therapeutic. ACS Appl Bio Mater. 2021;4:4522–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhary P, Ramalingam B, Das SK. Fabrication of Chitosan-Bolstered Multifunctional Graphene Nanocomposite as Antibacterial scaffolds for Hemorrhage Management and Wound-Therapeutic utility. ACS Biomaterials Sci Eng. 2020;6:5911–29.

    Article 
    CAS 

    Google Scholar
     

  • Chen X, Peng Y, Xue H, Liu G, Wang N, Shao Z. MiR-21 regulating PVT1/PTEN/IL-17 axis in direction of the therapy of infectious diabetic wound therapeutic by modified GO-derived biomaterial in mouse fashions. J Nanobiotechnol 2022, 20.

  • D’Amora U, Dacrory S, Hasanin MS, Longo A, Soriente A, Kamel S, Raucci MG, Ambrosio L, Scialla S. Advances within the Physico-Chemical, Antimicrobial and Angiogenic properties of Graphene-Oxide/Cellulose nanocomposites for Wound Therapeutic. Pharmaceutics 2023, 15.

  • Nandhakumar M, Thangaian DT, Sundaram S, Roy A, Subramanian B. A permanent in vitro wound therapeutic part recipient by bioactive glass-graphene oxide nanocomposites. Sci Rep 2022, 12.

  • Nowroozi N, Faraji S, Nouralishahi A, Shahrousvand M. Organic and structural properties of graphene oxide/curcumin nanocomposite included Chitosan as a scaffold for wound therapeutic utility. Life Sci 2021, 264.

  • Wang Y, Liu S, Yu W. Functionalized Graphene Oxide-Bolstered Chitosan Hydrogel as Biomimetic Dressing for Wound Therapeutic. Macromol Biosci 2021, 21.

  • Salleh A, Mustafa N, Teow YH, Fatimah MN, Khairudin FA, Ahmad I, Fauzi MB. Twin-Layered Method of Ovine Collagen-Gelatin/Cellulose Hybrid Biomatrix Containing Graphene Oxide-Silver Nanoparticles for Cutaneous Wound Therapeutic: Fabrication, Physicochemical, Cytotoxicity and Antibacterial Characterisation. Biomedicines 2022, 10.

  • Sadeghianmaryan A, Sardroud HA, Allafasghari S, Yazdanpanah Z, Naghieh S, Gorji M, Chen X. Electrospinning of polyurethane/graphene oxide for pores and skin wound dressing and its in vitro characterization. J Biomater Appl. 2020;35:135–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biswas Ok, Janani G, Udayakumar S, Deepika B, Girigoswami Ok. Tough edges of decreased graphene oxide (rGO) sheets elicit anticancerous actions: an in vitro examine. Outcomes Chem 2023, 6.

  • Suneetha M, Zo S, Choi SM, Han SS. Antibacterial, biocompatible, hemostatic, and tissue adhesive hydrogels primarily based on fungal-derived carboxymethyl chitosan-reduced graphene oxide-polydopamine for wound therapeutic purposes. Int J Biol Macromol 2023, 241.

  • Dou Y, Zhang Y, Zhang S, Ma S, Zhang H. Multi-functional conductive hydrogels primarily based on heparin–polydopamine advanced decreased graphene oxide for epidermal sensing and power wound therapeutic. J Nanobiotechnol 2023, 21.

  • Tanwar S, Arya A, Gaur A, Sharma AL. Transition steel dichalcogenide (TMDs) electrodes for supercapacitors: a complete evaluation. J Phys: Condens Matter 2021, 33.

  • Luo M, Fan T, Zhou Y, Zhang H, Mei L. 2D black phosphorus–primarily based Biomedical Functions. Adv Funct Mater 2019, 29.

  • Zhang W, Kuang Z, Music P, Li W, Gui L, Tang C, Tao Y, Ge F, Zhu L. Synthesis of a Two-Dimensional Molybdenum Disulfide Nanosheet and Ultrasensitive Trapping of Staphylococcus Aureus for Enhanced Photothermal and Antibacterial Wound-Therapeutic Remedy. Nanomaterials 2022, 12.

  • Harini Ok, Girigoswami Ok, Pallavi P, Gowtham P, Thirumalai A, Charulekha Ok, Girigoswami A. MoS2 nanocomposites for biomolecular sensing, illness monitoring, and therapeutic purposes. Nano Futures 2023, 7.

  • Li Y, Fu R, Duan Z, Zhu C, Fan D. Development of multifunctional hydrogel primarily based on the tannic acid-metal coating adorned MoS2 twin nanozyme for bacteria-infected wound therapeutic. Bioactive Mater. 2022;9:461–74.

    Article 
    CAS 

    Google Scholar
     

  • Gao Q, Zhang X, Yin W, Ma D, Xie C, Zheng L, Dong X, Mei L, Yu J, Wang C et al. Functionalized MoS2 Nanovehicle with Close to-Infrared Laser‐Mediated Nitric Oxide Launch and Photothermal Actions for Superior Micro organism‐Contaminated Wound Remedy. Small 2018, 14.

  • Yuwen L, Solar Y, Tan G, Xiu W, Zhang Y, Weng L, Teng Z, Wang L. MoS2@polydopamine-Ag nanosheets with enhanced antibacterial exercise for efficient therapy of Staphylococcus aureus biofilms and wound an infection. Nanoscale. 2018;10:16711–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y, Liu X, Liu Z, Xu Y. Seen-light‐pushed photocatalysis‐enhanced nanozyme of TiO2 Nanotubes@MoS2 nanoflowers for environment friendly Wound Therapeutic contaminated with Multidrug‐resistant Micro organism. Small 2021, 17.

  • Jin W, Music P, Wu Y, Tao Y, Yang Ok, Gui L, Zhang W, Ge F. Biofilm microenvironment-mediated MoS2 nanoplatform with its Photothermal/Photodynamic synergistic antibacterial molecular mechanism and Wound Therapeutic Examine. ACS Biomaterials Sci Eng. 2022;8:4274–88.

    Article 
    CAS 

    Google Scholar
     

  • Huang X-W, Wei J-J, Liu T, Zhang X-L, Bai S-M, Yang H-H. Silk fibroin-assisted exfoliation and functionalization of transition steel dichalcogenide nanosheets for antibacterial wound dressings. Nanoscale. 2017;9:17193–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yong Y, Zhou L, Gu Z, Yan L, Tian G, Zheng X, Liu X, Zhang X, Shi J, Cong W, et al. WS2 nanosheet as a brand new photosensitizer provider for mixed photodynamic and photothermal remedy of most cancers cells. Nanoscale. 2014;6:10394–403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie M, Yang M, Solar X, Yang N, Deng T, Li Y, Shen H. WS2 nanosheets functionalized by biomimetic lipids with enhanced dispersibility for photothermal and chemo mixture remedy. J Mater Chem B. 2020;8:2331–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang N, Zhu M, Xu G, Liu N, Yu C. A near-infrared light-responsive multifunctional nanocomposite hydrogel for environment friendly and synergistic antibacterial wound remedy and therapeutic promotion. J Mater Chem B. 2020;8:3908–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Zhang J, Yu H. Elemental selenium at nano dimension possesses decrease toxicity with out compromising the basic impact on selenoenzymes: comparability with selenomethionine in mice. Free Radic Biol Med. 2007;42:1524–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbaszadeh A, Tehmasebi-Foolad A, Rajabzadeh A, Beigi-Brojeni N, Zarei L. Results of Chitosan/Nano Selenium Biofilm on Contaminated Wound Therapeutic in rats; an experimental examine. Bull Emerg Trauma. 2019;7:284–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang W, Hu B, Yuan Y, Fang H, Jiang J, Li Q, Zhuo Y, Yang X, Wei J, Wang X. Seen light-responsive selenium nanoparticles mixed with Sonodynamic Remedy to Promote Wound Therapeutic. ACS Biomaterials Sci Eng. 2023;9:1341–51.

    Article 
    CAS 

    Google Scholar
     

  • Doostmohammadi M, Forootanfar H, Shakibaie M, Torkzadeh-Mahani M, Rahimi H-R, Jafari E, Ameri A, Amirheidari B. Bioactive anti-oxidative polycaprolactone/gelatin electrospun nanofibers containing selenium nanoparticles/vitamin E for wound dressing purposes. J Biomater Appl. 2021;36:193–209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramya S, Shanmugasundaram T, Balagurunathan R. Biomedical potential of actinobacterially synthesized selenium nanoparticles with particular reference to anti-biofilm, anti-oxidant, wound therapeutic, cytotoxic and anti-viral actions. J Hint Elem Med Biol. 2015;32:30–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao L, Wang L, Zhang M, Ullah MW, Liu L, Zhao W, Li Y, Ahmed AAQ, Cheng H, Shi Z, Yang G. In situ synthesized Selenium nanoparticles-decorated bacterial Cellulose/Gelatin hydrogel with enhanced Antibacterial, antioxidant, and anti‐inflammatory capabilities for facilitating pores and skin Wound Therapeutic. Adv Healthc Mater 2021, 10.

  • Altememy D, Javdani M, Khosravian P, Khosravi A, Moghtadaei Khorasgani E. Preparation of Transdermal Patch containing selenium nanoparticles loaded with doxycycline and analysis of pores and skin Wound Therapeutic in a rat mannequin. Prescription drugs 2022, 15.

  • Golmohammadi R, Najar-Peerayeh S, Tohidi Moghadam T, Hosseini SMJ. Synergistic antibacterial exercise and Wound Therapeutic properties of Selenium-Chitosan-Mupirocin Nanohybrid System: an in vivo examine on Rat Diabetic Staphylococcus aureus Wound an infection mannequin. Sci Rep 2020, 10.

  • Li W, Liu Z, Fontana F, Ding Y, Liu D, Hirvonen JT, Santos HA. Tailoring porous Silicon for Biomedical Functions: from drug supply to Most cancers Immunotherapy. Adv Mater 2018, 30.

  • Zhang H, Liu D, Shahbazi MA, Mäkilä E, Herranz-Blanco B, Salonen J, Hirvonen J, Santos HA. Fabrication of a multifunctional Nano‐in‐micro drug supply platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix. Adv Mater. 2014;26:4497–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jarvis KL, Barnes TJ, Prestidge CA. Floor chemical modification to regulate molecular interactions with porous silicon. J Colloid Interface Sci. 2011;363:327–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma L, Music X, Yu Y, Chen Y. Two-Dimensional Silicene/Silicon nanosheets: an rising Silicon‐composed nanostructure in Biomedicine. Adv Mater 2021, 33.

  • Duan W, Liu X, Zhao J, Zheng Y, Wu J. Porous Silicon Service endowed with Photothermal and Therapeutic results for Synergistic Wound Disinfection. ACS Appl Mater Interfaces. 2022;14:48368–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin Y, Yang Y, Duan W, Qu X, Wu J. Synergistic and On-Demand launch of Ag-AMPs loaded on porous Silicon Nanocarriers for Antibacteria and Wound Therapeutic. ACS Appl Mater Interfaces. 2021;13:16127–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng Q, Han Ok, Zheng C, Bai Q, Wu W, Zhu C, Zhang Y, Cui N, Lu T. Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound therapeutic. J Colloid Interface Sci. 2022;607:1239–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji X, Kong N, Wang J, Li W, Xiao Y, Gan ST, Zhang Y, Li Y, Music X, Xiong Q et al. A Novel High-Down synthesis of ultrathin 2D Boron Nanosheets for Multimodal Imaging‐guided Most cancers Remedy. Adv Mater 2018, 30.

  • Xu J-W, Yao Ok, Xu Z-Ok. Nanomaterials with a photothermal impact for antibacterial actions: an summary. Nanoscale. 2019;11:8680–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie Z, Meng X, Li X, Liang W, Huang W, Chen Ok, Chen J, Xing C, Qiu M, Zhang B et al. Two-Dimensional Borophene: Properties, Fabrication, and Promising Functions. Analysis 2020, 2020.

  • Lv J, Qi Y, Tian Y, Wang G, Shi L, Ning G, Ye J. Functionalized boron nanosheets with near-infrared-triggered photothermal and nitric oxide launch actions for environment friendly antibacterial therapy and wound therapeutic promotion. Biomaterials Sci. 2022;10:3747–56.

    Article 
    CAS 

    Google Scholar
     

  • Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y. Ultrathin black phosphorus nanosheets for environment friendly Singlet Oxygen Era. J Am Chem Soc. 2015;137:11376–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tayari V, Hemsworth N, Fakih I, Favron A, Gaufrès E, Gervais G, Martel R, Szkopek T. Two-dimensional magnetotransport in a black phosphorus bare quantum properly. Nat Commun 2015, 6.

  • Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, Ji X, Wang X, Shi J, Zhang H, Mei L. Black phosphorus nanosheets as a strong supply platform for Most cancers Theranostics. Adv Mater 2016, 29.

  • Huang Ok, Wu J, Gu Z. Black Phosphorus Hydrogel scaffolds improve bone regeneration by way of a sustained provide of calcium-free phosphorus. ACS Appl Mater Interfaces. 2018;11:2908–16.

    Article 

    Google Scholar
     

  • Wang S, Weng J, Fu X, Lin J, Fan W, Lu N, Qu J, Chen S, Wang T, Huang P. Black phosphorus nanosheets for gentle hyperthermia-enhanced chemotherapy and chemo-photothermal mixture remedy. Nanotheranostics. 2017;1:208–16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen W, Ouyang J, Yi X, Xu Y, Niu C, Zhang W, Wang L, Sheng J, Deng L, Liu YN, Guo S. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative dysfunction remedy. Adv Mater 2017, 30.

  • Zhang X, Chen G, Liu Y, Solar L, Solar L, Zhao Y. Black phosphorus-loaded Separable Microneedles as Responsive Oxygen Supply Carriers for Wound Therapeutic. ACS Nano. 2020;14:5901–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang J, Ji X, Zhang X, Feng C, Tang Z, Kong N, Xie A, Wang J, Sui X, Deng L et al. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer therapy. Proceedings of the Nationwide Academy of Sciences 2020, 117:28667–28677.

  • Liu B, Su Y, Wu S, Shen J. Native photothermal/photodynamic synergistic antibacterial remedy primarily based on two-dimensional BP@CQDs triggered by single NIR gentle supply. Photodiagn Photodyn Ther 2022, 39.

  • Zhou J, Li T, Zhang M, Han B, Xia T, Ni S, Liu Z, Chen Z, Tian X. Thermosensitive black phosphorus hydrogel loaded with silver sulfadiazine promotes pores and skin wound therapeutic. J Nanobiotechnol 2023, 21.

  • Bai X, Wang R, Hu X, Dai Q, Guo J, Cao T, Du W, Cheng Y, Xia S, Wang D, et al. Two-Dimensional Biodegradable Black Phosphorus nanosheets promote giant full-thickness Wound Therapeutic by means of in situ regeneration remedy. ACS Nano. 2024;18:3553–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding Q, Solar T, Su W, Jing X, Ye B, Su Y, Zeng L, Qu Y, Yang X, Wu Y et al. Bioinspired Multifunctional Black Phosphorus Hydrogel with antibacterial and antioxidant properties: a Stepwise Countermeasure for Diabetic pores and skin Wound Therapeutic. Adv Healthc Mater 2022, 11.

  • Zhao Y, Tian C, Liu Y, Liu Z, Li J, Wang Z, Han X. All-in-one bioactive properties of photothermal nanofibers for accelerating diabetic wound therapeutic. Biomaterials 2023, 295.

  • Xue C, Sutrisno L, Li M, Zhu W, Fei Y, Liu C, Wang X, Cai Ok, Hu Y, Luo Z. Implantable multifunctional black phosphorus nanoformulation-deposited biodegradable scaffold for combinational photothermal/ chemotherapy and wound therapeutic. Biomaterials 2021, 269.

  • Huang X-W, Wei J-J, Zhang M-Y, Zhang X-L, Yin X-F, Lu C-H, Music J-B, Bai S-M, Yang H-H. Water-based black Phosphorus Hybrid nanosheets as a moldable platform for Wound Therapeutic Functions. ACS Appl Mater Interfaces. 2018;10:35495–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharker SM. Hexagonal Boron Nitrides (White Graphene): a promising methodology for Most cancers Drug Supply. Int J Nanomed. 2019;14:9983–93.

    Article 

    Google Scholar
     

  • Şen Ö, Emanet M, Çulha M. Stimulatory impact of Hexagonal Boron nitrides in Wound Therapeutic. ACS Appl Bio Mater. 2019;2:5582–96.

    Article 
    PubMed 

    Google Scholar
     

  • Tarhan T, Şen Ö, Ciofani ME, Yılmaz D, Çulha M. Synthesis and characterization of silver nanoparticles adorned polydopamine coated hexagonal boron nitride and its impact on wound therapeutic. J Hint Elem Med Biol 2021, 67.

  • Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y. Cation intercalation and excessive volumetric capacitance of two-dimensional Titanium Carbide. Science. 2013;341:1502–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selvaraj S, Chauhan A, Verma R, Viswanathan Ok, Subbarayan R, Ghotekar S. Multifunctional biomedical purposes of MXene-based hydrogels: a evaluation. Inorg Chem Commun 2024, 164.

  • Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang R, Wen S, Cai S, Zhang W, Wu T, Xiong Y. MXene-based nanomaterials with enzyme-like properties for biomedical purposes. Nanoscale Horizons. 2023;8:1333–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin X, Li Z, Qiu J, Wang Q, Wang J, Zhang H, Chen T. Fascinating MXene nanomaterials: rising alternatives within the biomedical discipline. Biomaterials Sci. 2021;9:5437–71.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Fu R, Duan Z, Zhu C, Fan D. Synthetic Nonenzymatic antioxidant MXene Nanosheet-Anchored Injectable Hydrogel as a gentle photothermal-controlled oxygen launch platform for Diabetic Wound Therapeutic. ACS Nano. 2022;16:7486–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Wei W, Zhang M, Guo X, Zhang B, Wang D, Jiang X, Liu F, Tang J. Cryptotanshinone-Doped Photothermal Synergistic MXene@PDA nanosheets with Antibacterial and Anti‐Inflammatory properties for Wound Therapeutic. Adv Healthc Mater 2023, 12.

  • Li H, Dai J, Yi X, Cheng F. Era of cost-effective MXene@polydopamine-decorated chitosan nanofibrous wound dressing for selling wound therapeutic. Biomaterials Adv 2022, 140.

  • Xu X, Wang S, Wu H, Liu Y, Xu F, Zhao J. A multimodal antimicrobial platform primarily based on MXene for therapy of wound an infection. Colloids Surf B 2021, 207.

  • Li Y, Han M, Cai Y, Jiang B, Zhang Y, Yuan B, Zhou F, Cao C. Muscle-inspired MXene/PVA hydrogel with excessive toughness and photothermal remedy for selling bacteria-infected wound therapeutic. Biomaterials Sci. 2022;10:1068–82.

    Article 
    CAS 

    Google Scholar
     

  • Liu S, Li D, Wang Y, Zhou G, Ge Ok, Jiang L, Fang D. Versatile, high-strength and multifunctional polyvinyl alcohol/MXene/polyaniline hydrogel enhancing pores and skin wound therapeutic. Biomaterials Sci. 2022;10:3585–96.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Z, Qi Z, Kong W, Zhang R, Yao C. Functions of MXene and its modified supplies in pores and skin wound restore. Entrance Bioeng Biotechnol 2023, 11.

  • Zhou L, Zheng H, Liu Z, Wang S, Liu Z, Chen F, Zhang H, Kong J, Zhou F, Zhang Q. Conductive antibacterial hemostatic multifunctional scaffolds primarily based on Ti3C2Tx MXene nanosheets for selling Multidrug-resistant Micro organism-infected Wound Therapeutic. ACS Nano. 2021;15:2468–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Y, Zeng Q, Hu Y, He J, Wang H, Deng C, Li D. MXene/zinc ion embedded agar/sodium alginate hydrogel for speedy and environment friendly sterilization with photothermal and chemical synergetic remedy. Talanta 2024, 266.

  • Mao L, Hu S, Gao Y, Wang L, Zhao W, Fu L, Cheng H, Xia L, Xie S, Ye W et al. Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti3C2Tx) composite hydrogel as Wound Dressing for accelerating pores and skin Wound Therapeutic beneath Electrical Stimulation. Adv Healthc Mater 2020, 9.

  • Zhu H, Dai W, Wang L, Yao C, Wang C, Gu B, Li D, He J. Electroactive Oxidized Alginate/Gelatin/MXene (Ti3C2Tx) Composite Hydrogel with Improved Biocompatibility and Self-Therapeutic Property. Polymers 2022, 14.

  • You D, Li Ok, Guo W, Zhao G, Fu C. Poly (lactic-co-glycolic acid)/graphene oxide composites mixed with electrical stimulation in wound therapeutic: preparation and characterization. Int J Nanomed. 2019;14:7039–52.

    Article 
    CAS 

    Google Scholar
     

  • Hao P-C, Burnouf T, Chiang C-W, Jheng P-R, Szunerits S, Yang J-C, Chuang E-Y. Enhanced diabetic wound therapeutic utilizing platelet-derived extracellular vesicles and decreased graphene oxide in polymer-coordinated hydrogels. J Nanobiotechnol 2023, 21.

  • Koyyada A, Orsu P. Nanofibrous scaffolds of carboxymethyl guargum potentiated with decreased graphene oxide for in vitro and in vivo wound therapeutic purposes. Int J Pharm 2021, 607.

  • Heo JS. Selenium-stimulated exosomes improve Wound Therapeutic by modulating irritation and angiogenesis. Int J Mol Sci 2022, 23.

  • Yang J, Yang YW. Steel–Natural frameworks for Biomedical Functions. Small 2020, 16.

  • Yang M, Zhang J, Shi W, Zhang J, Tao C. Current advances in steel–natural frameworks and their composites for the phototherapy of pores and skin wounds. J Mater Chem B. 2022;10:4695–713.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu L-Q, Chen X-Y, Cai M-H, Tao X-H, Fan Y-B, Mou X-Z. Floor Engineered Steel-Natural frameworks (MOFs) primarily based Novel Hybrid programs for Efficient Wound Therapeutic: a evaluation of latest developments. Entrance Bioeng Biotechnol 2020, 8.

  • Xing F, Ma H, Yu P, Zhou Y, Luo R, Xiang Z, Maria Rommens P, Duan X, Ritz U. Multifunctional steel–natural frameworks for wound therapeutic and pores and skin regeneration. Mater Design 2023, 233.

  • Cun J-E, Fan X, Pan Q, Gao W, Luo Ok, He B, Pu Y. Copper-based steel–natural frameworks for biomedical purposes. Adv Colloid Interface Sci 2022, 305.

  • Li Y, Wen G, Li J, Li Q, Zhang H, Tao B, Zhang J. Synthesis and shaping of steel–natural frameworks: a evaluation. Chem Commun. 2022;58:11488–506.

    Article 
    CAS 

    Google Scholar
     

  • Wang S, Yan F, Ren P, Li Y, Wu Q, Fang X, Chen F, Wang C. Incorporation of metal-organic frameworks into electrospun chitosan/poly (vinyl alcohol) nanofibrous membrane with enhanced antibacterial exercise for wound dressing utility. Int J Biol Macromol. 2020;158:9–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ximing G, Bin G, Yuanlin W, Shuanghong G. Preparation of spherical steel–natural frameworks encapsulating ag nanoparticles and examine on its antibacterial exercise. Mater Sci Engineering: C. 2017;80:698–707.

    Article 

    Google Scholar
     

  • Zhang N, Zhang X, Zhu Y, Wang D, Liu W, Chen D, Li R, Li S. MOF/MXene-loaded PVA/chitosan hydrogel with antimicrobial impact and wound therapeutic promotion beneath electrical stimulation and improved mechanical properties. Int J Biol Macromol 2024, 264.

  • Wang T-L, Zhou Z-F, Liu J-F, Hou X-D, Zhou Z, Dai Y-L, Hou Z-Y, Chen F, Zheng L-P. Donut-like MOFs of copper/nicotinic acid and composite hydrogels with superior bioactivity for rh-bFGF delivering and pores and skin wound therapeutic. J Nanobiotechnol 2021, 19.

  • Chen Y, Cai J, Liu D, Liu S, Lei D, Zheng L, Wei Q, Gao M. Zinc-based steel natural framework with antibacterial and anti inflammatory properties for selling wound therapeutic. Regenerative Biomaterials 2022, 9.

  • Wang C, Luo Y, Liu X, Cui Z, Zheng Y, Liang Y, Li Z, Zhu S, Lei J, Feng X, Wu S. The improved photocatalytic sterilization of MOF-Based mostly nanohybrid for speedy and moveable remedy of bacteria-infected open wounds. Bioactive Mater. 2022;13:200–11.

    Article 

    Google Scholar
     

  • Li J, Yan Y, Chen Y, Fang Q, Hussain MI, Wang L-N. Versatile curcumin-loaded Zn-MOF hydrogel for long-term drug launch and antibacterial actions. Int J Mol Sci 2023, 24.

  • Yao S, Chi J, Wang Y, Zhao Y, Luo Y, Wang Y. Zn-MOF encapsulated antibacterial and degradable microneedles array for selling Wound Therapeutic. Adv Healthc Mater 2021, 10.

  • Yin M, Wu J, Deng M, Wang P, Ji G, Wang M, Zhou C, Blum NT, Zhang W, Shi H, et al. Multifunctional Magnesium Natural Framework-based Microneedle Patch for accelerating Diabetic Wound Therapeutic. ACS Nano. 2021;15:17842–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Q, Liu Ok, Jiang T, Ren S, Kang Y, Li W, Yao H, Yang X, Dai H, Chen Z. Injectable and self-healing chitosan-based hydrogel with MOF-loaded α-lipoic acid promotes diabetic wound therapeutic. Mater Sci Engineering: C 2021, 131.

  • Hu WC, Younis MR, Zhou Y, Wang C, Xia XH. In situ fabrication of Ultrasmall Gold Nanoparticles/2D MOFs hybrid as Nanozyme for Antibacterial Remedy. Small 2020, 16.

  • Chen M, Lengthy Z, Dong R, Wang L, Zhang J, Li S, Zhao X, Hou X, Shao H, Jiang X. Titanium Incorporation into Zr-Porphyrinic Steel–Natural frameworks with enhanced antibacterial exercise in opposition to Multidrug‐resistant pathogens. Small 2020, 16.

  • Zeng Y, Wang C, Lei Ok, Xiao C, Jiang X, Zhang W, Wu L, Huang J, Li W. Multifunctional MOF-Based mostly Microneedle Patch with Synergistic Chemo‐Photodynamic Antibacterial Impact and sustained launch of progress issue for Power Wound Therapeutic. Adv Healthc Mater 2023, 12.

  • Yao S, Wang Y, Chi J, Yu Y, Zhao Y, Luo Y, Wang Y. Porous MOF microneedle array Patch with Photothermal responsive nitric oxide supply for Wound Therapeutic. Adv Sci 2021, 9.

  • Yang G, Fan R, Yang J, Yi L, Chen S, Wan W. Magnesium/gallic acid bioMOFs laden carbonized mushroom aerogel successfully heals biofilm-infected pores and skin wounds. Biomaterials 2023, 302.

  • Gao P, Wang M, Chen Y, Pan W, Zhou P, Wan X, Li N, Tang B. A COF-based nanoplatform for extremely environment friendly most cancers prognosis, photodynamic remedy and prognosis. Chem Sci. 2020;11:6882–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohajer F, Mohammadi Ziarani G, Badiei A, Iravani S, Varma RS. Current advances in covalent natural frameworks (COFs) for wound therapeutic and antimicrobial purposes. RSC Adv. 2023;13:8136–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Chen C, Zhao J, Tan M, Zhai S, Wei Y, Wang L, Dai T. Electrospun Fibrous Membrane Containing a Cyclodextrin Covalent Natural Framework with Antibacterial properties for accelerating Wound Therapeutic. ACS Biomaterials Sci Eng. 2021;7:3898–907.

    Article 
    CAS 

    Google Scholar
     

  • Ding LG, Wang S, Yao BJ, Li F, Li YA, Zhao GY, Dong YB. Synergistic Antibacterial and Anti-inflammatory results of a drug‐loaded Self‐Standing Porphyrin‐COF membrane for environment friendly pores and skin Wound Therapeutic. Adv Healthc Mater 2021, 10.

  • Wang X, Solar B, Ye Z, Zhang W, Xu W, Gao S, Zhou N, Wu F, Shen J. Enzyme-responsive COF-Based mostly thiol-targeting Nanoinhibitor for curing bacterial infections. ACS Appl Mater Interfaces. 2022;14:38483–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou Y, Wang P, Zhang A, Qin Z, Li Y, Xianyu Y, Zhang H. Covalent Natural Framework-Integrated Nanofibrous membrane as an Clever platform for Wound Dressing. ACS Appl Mater Interfaces. 2022;14:8680–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar B, Wu F, Wang X, Music Q, Ye Z, Mohammadniaei M, Zhang M, Chu X, Xi S, Zhou N et al. An optimally designed Engineering Exosome–Reductive COF Built-in Nanoagent for synergistically enhanced Diabetic Fester Wound Therapeutic. Small 2022, 18.

  • Zhang H, Fan T, Chen W, Li Y, Wang B. Current advances of two-dimensional supplies in sensible drug supply nano-systems. Bioactive Mater. 2020;5:1071–86.

    Article 

    Google Scholar
     

  • Chen Y, Wu Y, Solar B, Liu S, Liu H. Two-dimensional nanomaterials for Most cancers Nanotheranostics. Small 2017, 13.

  • Ji D-Ok, Ménard-Moyon C, Bianco A. Bodily-triggered nanosystems primarily based on two-dimensional supplies for most cancers theranostics. Adv Drug Deliv Rev. 2019;138:211–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *