Polymer-locking fusogenic liposomes for glioblastoma-targeted siRNA supply and CRISPR–Cas gene enhancing

  • Jackson, C. M., Choi, J. & Lim, M. Mechanisms of immunotherapy resistance: classes from glioblastoma. Nat. Immunol. 20, 1100–1109 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haar, C. P. et al. Drug resistance in glioblastoma: a mini evaluation. Neurochem. Res. 37, 1192–1200 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, X. et al. Twin functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma through attenuating EGFR and MET signaling pathways. Nat. Commun. 11, 594 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stupp, R. et al. Results of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised section III examine: 5-year evaluation of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klemm, F. et al. Interrogation of the microenvironmental panorama in mind tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660.e1617 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, X. et al. DNA injury restore alterations modulate M2 polarization of microglia to rework the tumor microenvironment through the p53-mediated MDK expression in glioma. eBioMedicine 41, 185–199 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaina, B. & Christmann, M. DNA restore in customized mind most cancers remedy with temozolomide and nitrosoureas. DNA Restore 78, 128–141 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Glioblastoma cell-derived lncRNA-containing exosomes induce microglia to supply complement C5, selling chemotherapy resistance. Most cancers Immunol. Res. 9, 1383–1399 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Nanoparticle-mediated convection-enhanced supply of a DNA intercalator to gliomas circumvents temozolomide resistance. Nat. Biomed. Eng. 5, 1048–1058 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, G. et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complicated for in vivo genome enhancing. Nat. Nanotechnol. 14, 974–980 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, Y. et al. Single siRNA nanocapsules for efficient siRNA mind supply and glioblastoma therapy. Adv. Mater. 32, 2000416 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Q. et al. Multistage supply nanoparticle facilitates environment friendly CRISPR/dCas9 activation and tumor development suppression in vivo. Adv. Sci. 6, 1801423 (2019).

    Article 

    Google Scholar
     

  • Liu, Q. et al. NanoRNP overcomes tumor heterogeneity in most cancers therapy. Nano Lett. 19, 7662–7672 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J. et al. Exact concentrating on of POLR2A as a therapeutic technique for human triple unfavorable breast most cancers. Nat. Nanotechnol. 14, 388–397 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilleron, J. et al. Picture-based evaluation of lipid nanoparticle–mediated siRNA supply, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, Q., Zhou, Z., Qiu, N. & Shen, Y. Rational design of most cancers nanomedicine: nanoproperty integration and synchronization. Adv. Mater. 29, 1606628 (2017).

    Article 

    Google Scholar
     

  • Solar, Q. et al. Integration of nanoassembly capabilities for an efficient supply cascade for most cancers medication. Adv. Mater. 26, 7615–7621 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donahue, N. D., Acar, H. & Wilhelm, S. Ideas of nanoparticle mobile uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 143, 68–96 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Nanomechanical motion opens endo-lysosomal compartments. Nat. Commun. 14, 6645 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obermeier, B., Daneman, R. & Ransohoff, R. M. Growth, upkeep and disruption of the blood-brain barrier. Nat. Med. 19, 1584–1596 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. Neuroprotective nanoscavenger induces coaggregation of β-amyloid and facilitates its clearance in Alzheimer’s illness mind. CCS Chem. 3, 2316–2330 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rose, D. A. et al. Self-immolative hydroxybenzylamine linkers for traceless protein modification. J. Am. Chem. Soc. 144, 6050–6058 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maier, Okay. & Wagner, E. Acid-labile traceless click on linker for protein transduction. J. Am. Chem. Soc. 134, 10169–10173 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernardes, G. J., Steiner, M., Hartmann, I., Neri, D. & Casi, G. Web site-specific chemical modification of antibody fragments utilizing traceless cleavable linkers. Nat. Protoc. 8, 2079–2089 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M., Solar, S., Neufeld, C. I., Perez‐Ramirez, B. & Xu, Q. Reactive oxygen species‐responsive protein modification and its intracellular supply for focused most cancers remedy. Angew. Chem. 126, 13662–13666 (2014).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Twin‐locking nanoparticles disrupt the PD‐1/PD‐L1 pathway for environment friendly most cancers immunotherapy. Adv. Mater. 31, 1905751 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y., Yang, W., Zhang, J., Meng, F. & Zhong, Z. Protein toxin chaperoned by LRP‐1‐focused virus‐mimicking vesicles induces excessive‐effectivity glioblastoma remedy in vivo. Adv. Mater. 30, 1800316 (2018).

    Article 

    Google Scholar
     

  • Kim, B. et al. Securing the payload, discovering the cell, and avoiding the endosome: peptide‐focused, fusogenic porous silicon nanoparticles for supply of siRNA. Adv. Mater. 31, 1902952 (2019).

    Article 

    Google Scholar
     

  • Kim, H.-R. et al. Fusogenic liposomes encapsulating mitochondria as a promising supply system for osteoarthritis remedy. Biomaterials 302, 122350 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, X. et al. Tumor cell floor modification with immuno-amplified nanoparticles to reinforce most cancers immunotherapy. Mater. At present Chem. 27, 101303 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kube, S. et al. Fusogenic liposomes as nanocarriers for the supply of intracellular proteins. Langmuir 33, 1051–1059 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou, L. Y., Ming, Okay. & Chan, W. C. Methods for the intracellular supply of nanoparticles. Chem. Soc. Rev. 40, 233–245 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, C. et al. Membrane‐fusion‐mediated multiplex engineering of tumor cell floor glycans for enhanced NK cell remedy. Adv. Mater. 35, 2206989 (2023).

    Article 
    CAS 

    Google Scholar
     

  • He, Y. et al. Monensin enhanced era of extracellular vesicles as transfersomes for selling tumor penetration of pyropheophorbide-a from fusogenic liposome. Nano Lett. 22, 1415–1424 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, H. et al. Focused fusogenic liposomes for efficient tumor supply and penetration of lipophilic cargoes. ACS Biomater. Sci. Eng. 9, 1919–1927 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, C. et al. Anti-phagocytosis-blocking repolarization-resistant membrane-fusogenic liposome (ARMFUL) for adoptive cell immunotherapy. Sci. Adv. 9, eadh2413 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, P. et al. A multistage cooperative nanoplatform allows intracellular co‐supply of proteins and chemotherapeutics for most cancers remedy. Adv. Mater. 32, 2000013 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, C. et al. In situ modification of the tumor cell floor with immunomodulating nanoparticles for efficient suppression of tumor development in mice. Adv. Mater. 31, 1902542 (2019).

    Article 

    Google Scholar
     

  • Zhao, Y. et al. Bi-specific macrophage nano-engager for most cancers immunotherapy. Nano At present 41, 101313 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Y. et al. Microenvironment reworking micelles for Alzheimer’s illness remedy by early modulation of activated microglia. Adv. Sci. 6, 1801586 (2019).

    Article 

    Google Scholar
     

  • de Gracia Lux, C. et al. Biocompatible polymeric nanoparticles degrade and launch cargo in response to biologically related ranges of hydrogen peroxide. J. Am. Chem. Soc. 134, 15758–15764 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Udenfriend, S. et al. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and first amines within the picomole vary. Science 178, 871–872 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Stapled liposomes improve cross‐priming of radio‐immunotherapy. Adv. Mater. 34, 2107161 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Polymer‐strengthened liposomes amplify immunogenic cell demise‐related antitumor immunity for photodynamic‐immunotherapy. Adv. Funct. Mater. 32, 2209711 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Manders, E. M., Verbeek, F. & Aten, J. Measurement of co‐localization of objects in twin‐color confocal pictures. J. Microsc. 169, 375–382 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barroso, S. I. & Aguilera, A. Detection of DNA double-strand breaks by gamma-H2AX immunodetection. Strategies Mol. Biol. 2153, 1–8 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taha, E. A., Lee, J. & Hotta, A. Supply of CRISPR-Cas instruments for in vivo genome enhancing remedy: developments and challenges. J. Management. Launch 342, 345–361 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *