Topotaxial mutual-exchange progress of magnetic Zintl Eu3In2As4 nanowires with axion insulator classification

  • Thelander, C. et al. Nanowire-based one-dimensional electronics. Mater. As we speak 9, 28–35 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nat. Photon 3, 569–576 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Yang, P., Yan, R. & Fardy, M. Semiconductor nanowire: what’s subsequent? Nano Lett. 10, 1529–1536 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramgir, N. S., Yang, Y. & Zacharias, M. Nanowire-based sensors. Small 6, 1705–1722 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dasgupta, N. P. et al. twenty fifth anniversary article: semiconductor nanowires—synthesis, characterization, and functions. Adv. Mater. 26, 2137–2184 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, N., Cai, Y. & Zhang, R. Q. Development of nanowires. Mater. Sci. Eng. R Rep. 60, 1–51 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Lu, W. & Lieber, C. M. Semiconductor nanowires. J. Phys. D: Appl. Phys. 39, R387 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Güniat, L., Caroff, P. & Fontcuberta i Morral, A. Vapor section progress of semiconductor nanowires: key developments and open questions. Chem. Rev. 119, 8958–8971 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kuno, M. An outline of solution-based semiconductor nanowires: synthesis and optical research. Phys. Chem. Chem. Phys. 10, 620–639 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serrà, A. & Vallés, E. Superior electrochemical synthesis of multicomponent metallic nanorods and nanowires: fundamentals and functions. Appl. Mater. As we speak 12, 207–234 (2018).

    Article 

    Google Scholar
     

  • Cao, G. & Liu, D. Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv. Colloid Interface Sci. 136, 45–64 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, H. J., Werner, P. & Zacharias, M. Semiconductor nanowires: from self-organization to patterned progress. Small 2, 700–717 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dick, Okay. A. A assessment of nanowire progress promoted by alloys and non-alloying components with emphasis on Au-assisted III–V nanowires. Prog. Cryst. Development Charact. Mater. 54, 138–173 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Lotgering, F. Okay. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal buildings—I. J. Inorg. Nucl. Chem. 9, 113–123 (1959).

    Article 
    CAS 

    Google Scholar
     

  • Shannon, R. D. & Rossi, R. C. Definition of topotaxy. Nature 202, 1000–1001 (1964).

    Article 

    Google Scholar
     

  • Beberwyck, B. J., Surendranath, Y. & Alivisatos, A. P. Cation change: a flexible device for nanomaterials synthesis. J. Phys. Chem. C 117, 19759–19770 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Son, D. H., Hughes, S. M., Yin, Y. & Paul Alivisatos, A. Cation change reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moon, G. D., Ko, S., Xia, Y. & Jeong, U. Chemical transformations in ultrathin chalcogenide nanowires. ACS Nano 4, 2307–2319 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong, U., Camargo, C. P. H., Hwan Lee, Y. & Xia, Y. Chemical transformation: a strong path to metallic chalcogenide nanowires. J. Mater. Chem. 16, 3893–3897 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Moon, G. D. et al. Chemical transformations of nanostructured supplies. Nano As we speak 6, 186–203 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Rivest, B. J. & Jain, Okay. P. Cation change on the nanoscale: an rising method for brand new materials synthesis, gadget fabrication, and chemical sensing. Chem. Soc. Rev. 42, 89–96 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dloczik, L. & Könenkamp, R. Nanostructure switch in semiconductors by ion change. Nano Lett. 3, 651–653 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Schöllhorn, R. Reversible topotactic redox reactions of solids by electron/ion switch. Angew. Chem. Int. Ed. 19, 983–1003 (1980).

    Article 

    Google Scholar
     

  • Lou, X. W., Deng, D., Lee, J. Y., Feng, J. & Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their software as lithium-ion battery electrodes. Adv. Mater. 20, 258–262 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J.-H. et al. Au-assisted substrate-faceting for inclined nanowire progress. Nano Lett. 18, 4115–4122 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Childs, A. B., Baranets, S. & Bobev, S. 5 new ternary indium-arsenides found. Synthesis and structural characterization of the zintl phases Sr3In2As4, Ba3In2As4, Eu3In2As4, Sr5In2As6 and Eu5In2As6. J. Strong State Chem. 278, 120889 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cordier, G., Schäfer, H. & Stelter, M. Sr3In2P4 und Ca3In2As4, Zintlphasen mit Bänderanionen aus kanten-und eckenverknüpften InP4 bzw. InAs4-Tetraedern. Z. Naturforsch. 41b, 1416–1419 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Shtrikman, H. et al. Intrinsic magnetic (EuIn)As nanowire shells with a singular crystal construction. Nano Lett. 22, 8925–8931 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, R. D. et al. Spontaneous superlattice formation in nanorods by partial cation change. Science 317, 355–358 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taha, T. A. et al. Construction, magnetic, opto-electronic and thermoelectric properties of A3In2As4 and A5In2As6 (A = Sr and Eu) Zintl section compounds. J. Alloy. Compd. 938, 168614 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, J. et al. Detrimental magnetoresistance in a magnetic semiconducting Zintl section: Eu3In2P4. Inorg. Chem. 44, 5322–5327 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riberolles, S. X. M. et al. Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2. Nat. Commun. 12, 999 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y., Tune, Z., Wang, Z., Weng, H. & Dai, X. Increased-order topology of the axion insulator EuIn2As2. Phys. Rev. Lett. 122, 256402 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato, T. et al. Signature of band inversion within the antiferromagnetic section of axion insulator candidate EuIn2As2. Phys. Rev. Res. 2, 033342 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Persky, E., Sochnikov, I. & Kalisky, B. Learning quantum supplies with scanning SQUID microscopy. Annu. Rev. Condens. Matter Phys. 13, 385–405 (2022).

    Article 

    Google Scholar
     

  • Payne, A. C. et al. EuSnP: a novel antiferromagnet with two-dimensional, corrugated Sn sheets. J. Alloy. Compd. 338, 229–234 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Payne, A. C. et al. Synthesis, magnetic and digital properties of single crystals of EuMn2P2. J. Strong State Chem. 163, 498–505 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Nenno, D. M., Garcia, C. A. C., Gooth, J., Felser, C. & Narang, P. Axion physics in condensed-matter programs. Nat. Rev. Phys. 2, 682–696 (2020).

    Article 

    Google Scholar
     

  • Wollan, E. O. & Koehler, W. C. Neutron diffraction examine of the magnetic properties of the collection of perovskite-type compounds [(1–x)La, xCa]MnO3. Phys. Rev. 100, 545–563 (1955).

    Article 
    CAS 

    Google Scholar
     

  • Rahn, M. C. et al. Magnetism within the axion insulator candidate Eu5In2Sb6. Phys. Rev. B 109, 174404 (2024).

    Article 

    Google Scholar
     

  • Ahn, J. & Yang, B.-J. Symmetry illustration method to topological invariants in C2zT-symmetric programs. Phys. Rev. B 99, 235125 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bouhon, A., Lange, G. F. & Slager, R.-J. Topological correspondence between magnetic area group representations and subdimensions. Phys. Rev. B 103, 245127 (2021).

    Article 
    CAS 

    Google Scholar
     

  • González-Hernández, R., Pinilla, C. & Uribe, B. Axion insulators protected by C2T symmetry, their Okay-theory invariants, and materials realizations. Phys. Rev. B 106, 195144 (2022).

    Article 

    Google Scholar
     

  • Kang, J.-H. et al. Crystal construction and transport in merged InAs nanowires MBE grown on (001) InAs. Nano Lett. 13, 5190–5196 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, J.-H., Galicka, M., Kacman, P. & Shtrikman, H. Wurtzite/zinc-blende ‘Okay’-shape InAs nanowires with embedded two-dimensional wurtzite plates. Nano Lett. 17, 531–537 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reiner, J. et al. Sizzling electrons regain coherence in semiconducting nanowires. Phys. Rev. X 7, 021016 (2017).


    Google Scholar
     

  • Tersoff, J. Modeling solid-state chemistry: interatomic potentials for multicomponent programs. Phys. Rev. B 39, 5566–5568 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Hammerschmidt, T., Kratzer, P. & Scheffler, M. Analytic many-body potential for InAs/GaAs surfaces and nanostructures: formation vitality of InAs quantum dots. Phys. Rev. B 77, 235303 (2008).

    Article 

    Google Scholar
     

  • Clarke, J. & Braginski, I. A. (eds) The SQUID Handbook: Fundamentals and Know-how of SQUIDs and SQUID Programs Vol. 1 (Wiley, 2004).

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U examine. Phys. Rev. B 57, 1505–1509 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Souza, I., Marzari, N. & Vanderbilt, D. Maximally localized Wannier features for entangled vitality bands. Phys. Rev. B 65, 035109 (2001).

    Article 

    Google Scholar
     

  • Wu, Q., Zhang, S., Tune, H.-F., Troyer, M. & Soluyanov, A. A. WannierTools: an open-source software program package deal for novel topological supplies. Comput. Phys. Commun. 224, 405–416 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *