Bacterial derivatives mediated drug supply in most cancers remedy: a brand new era technique | Journal of Nanobiotechnology

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2021;71(3):209–49.

    Article 
    PubMed 

    Google Scholar
     

  • Clancy E. ACS report exhibits prostate most cancers on the rise, cervical most cancers on the decline. Renal Urol Information. 2023. https://doi.org/10.3322/caac.21763.

    Article 

    Google Scholar
     

  • Hasan Mujahid M, Upadhyay TK, Upadhye V, Sharangi AB, Saeed M. Phytocompound identification of aqueous Zingiber officinale rhizome (ZOME) extract reveals antiproliferative and reactive oxygen species mediated apoptotic induction inside cervical most cancers cells: an in vitro and in silico strategy. J Biomol Struct Dyn. 2023;12:1–28.

    Article 

    Google Scholar
     

  • Cao Z, Liu J. Micro organism and bacterial derivatives as drug carriers for most cancers remedy. J Management Launch. 2020;10(326):396–407.

    Article 

    Google Scholar
     

  • Wu L, Bao F, Li L, Yin X, Hua Z. Bacterially mediated drug supply and therapeutics: methods and developments. Adv Drug Deliv Rev. 2022;1(187):114363.

    Article 

    Google Scholar
     

  • Fan JY, Huang Y, Li Y, Muluh TA, Fu SZ, Wu JB. Micro organism in most cancers remedy: a brand new era of weapons. Most cancers Med. 2022;11(23):4457–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hossen S, Hossain MK, Basher MK, Mia MN, Rahman MT, Uddin MJ. Good nanocarrier-based drug supply programs for most cancers remedy and toxicity research: a overview. J Adv Res. 2019;1(15):1–8.

    Article 

    Google Scholar
     

  • Chen J, Ning C, Zhou Z, Yu P, Zhu Y, Tan G, Mao C. Nanomaterials as photothermal therapeutic brokers. Prog Mater Sci. 2019;1(99):1–26.

    Article 
    CAS 

    Google Scholar
     

  • Zhao X, Xie N, Zhang H, Zhou W, Ding J. Bacterial drug supply programs for most cancers remedy: “Why” and “How”. Pharmaceutics. 2023;15(9):2214.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krick EL, Sorenmo KU, Rankin SC, Cheong I, Kobrin B, Thornton Ok, Kinzler KW, Vogelstein B, Zhou S, Diaz LA. Analysis of Clostridium novyi–NT spores in canines with naturally occurring tumors. Am J Vet Res. 2012;73(1):112–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Wang Q, Tian X, Shi X. Studying from Clostridium novyi-NT: tips on how to defeat most cancers. J Most cancers Res Ther. 2018;14(Suppl 1):S1-6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mi Z, Feng ZC, Li C, Yang X, Ma MT, Rong PF. Salmonella-mediated most cancers remedy: an revolutionary therapeutic technique. J Most cancers. 2019;10(20):4765.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasinskas RW, Forbes NS. Salmonella typhimurium particularly chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol Bioeng. 2006;94(4):710–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kucerova P, Cervinkova M. Spontaneous regression of tumour and the position of microbial an infection–potentialities for most cancers therapy. Anticancer Medicine. 2016;27(4):269.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen W, Wang Y, Qin M, Zhang X, Zhang Z, Solar X, Gu Z. Micro organism-driven hypoxia concentrating on for mixed biotherapy and photothermal remedy. ACS Nano. 2018;12(6):5995–6005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM, Topalian SL, Yang JC, Inventory F, Freezer LJ. Section I research of the intravenous administration of attenuated Salmonella typhimurium to sufferers with metastatic melanoma. J Clin Oncol. 2002;20(1):142–52.

    Article 
    PubMed 

    Google Scholar
     

  • Mercado-Lubo R, Zhang Y, Zhao L, Rossi Ok, Wu X, Zou Y, Castillo A, Leonard J, Bortell R, Greiner DL, Shultz LD. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat Commun. 2016;7(1):12225.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felgner S, Kocijancic D, Frahm M, Heise U, Rohde M, Zimmermann Ok, Falk C, Erhardt M, Weiss S. Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor remedy. Oncoimmunology. 2018;7(2): e1382791.

    Article 
    PubMed 

    Google Scholar
     

  • Fritz SE, Henson MS, Greengard E, Winter AL, Stuebner KM, Yoon U, Wilk VL, Borgatti A, Augustin LB, Modiano JF, Saltzman DA. A section I scientific research to guage security of orally administered, genetically engineered Salmonella enterica serovar Typhimurium for canine osteosarcoma. Vet Med Sci. 2016;2(3):179–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Mixture bacteriolytic remedy for the therapy of experimental tumors. Proc Natl Acad Sci. 2001;98(26):15155–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T. Programmable micro organism induce sturdy tumor regression and systemic antitumor immunity. Nat Med. 2019;25(7):1057–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou S, Gravekamp C, Bermudes D, Liu Ok. Tumour-targeting micro organism engineered to struggle most cancers. Nat Rev Most cancers. 2018;18(12):727–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forbes NS. Engineering the right (bacterial) most cancers remedy. Nat Rev Most cancers. 2010;10(11):785–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katuri J, Ma X, Stanton MM, Sánchez S. Designing micro-and nanoswimmers for particular functions. Acc Chem Res. 2017;50(1):2–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang J, Sitti M. Chemotaxis of bio-hybrid a number of bacteria-driven microswimmers. Sci Rep. 2016;6(1):32135.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang J, Wright Carlsen R, Sitti M. pH-taxis of biohybrid microsystems. Sci Rep. 2015;5(1):11403.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kefayat A, Ghahremani F, Motaghi H, Rostami S, Mehrgardi MA. Alive attenuated Salmonella as a cargo shuttle for sensible carrying of gold nanoparticles to tumour hypoxic areas. J Drug Goal. 2019;27(3):315–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Felfoul O, Mohammadi M, Taherkhani S, De Lanauze D, Zhong XuY, Loghin D, Essa S, Jancik S, Houle D, Lafleur M, Gaboury L. Magneto-aerotactic micro organism ship drug-containing nanoliposomes to tumour hypoxic areas. Nat Nanotechnol. 2016;11(11):941–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi M, Sukowati EW, Nomura S, Kato A, Mizuseki Ok, Watanabe Y, Mukai H. Influence of tumoral construction and bacterial species on progress and biodistribution of dwell bacterial therapeutics in xenografted tumours. J Drug Goal. 2023;31(2):194–205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu L, He Q, Lu X, Hu L, Qiang H, Pei P. Floor engineering on micro organism for tumor immunotherapy: methods and views. Adv Funct Mater. 2024. https://doi.org/10.1002/adfm.202405304.

    Article 

    Google Scholar
     

  • Montanaro J, Inic-Kanada A, Ladurner A, Stein E, Belij S, Bintner N, Schlacher S, Schuerer N, Mayr UB, Lubitz W, Leisch N. Escherichia coli Nissle 1917 bacterial ghosts retain essential floor properties and categorical chlamydial antigen: an imaging research of a supply system for the ocular floor. Drug Des Dev Ther. 2015;21:3741–54.


    Google Scholar
     

  • Langemann T, Koller VJ, Muhammad A, Kudela P, Mayr UB, Lubitz W. The bacterial ghost platform system: manufacturing and functions. Bioeng Bugs. 2010;1(5):326–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henrich B, Lubitz W, Plapp R. Lysis of Escherichia coli by induction of cloned ϕX174 genes. Mol Gen Genet MGG. 1982;185:493–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bläsi U, Linke RP, Lubitz W. Proof for membrane-bound oligomerization of bacteriophage ϕ X174 lysis protein-E. J Biol Chem. 1989;264(8):4552–8.

    Article 
    PubMed 

    Google Scholar
     

  • Witte A, Bläsi U, Halfmann G, Szostak M, Wanner G, Lubitz W. PhiX174 protein E-mediated lysis of Escherichia coli. Biochimie. 1990;72(2–3):191–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Witte A, Wanner G, Sulzner M, Lubitz W. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch Microbiol. 1992;157:381–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tabrizi CA, Walcher P, Mayr UB, Stiedl T, Binder M, McGrath J, Lubitz W. Bacterial ghosts–organic particles as supply programs for antigens, nucleic acids and medicines. Curr Opin Biotechnol. 2004;15(6):530–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huter V, Szostak MP, Gampfer J, Prethaler S, Wanner G, Gabor F, Lubitz W. Bacterial ghosts as drug provider and concentrating on autos. J Management Launch. 1999;61(1–2):51–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haslberger AG, Kohl G, Felnerova D, Mayr UB, Fürst-Ladani S, Lubitz W. Activation, stimulation and uptake of bacterial ghosts in antigen presenting cells. J Biotechnol. 2000;83(1–2):57–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Liu Y, Yu Y, Yang S, Feng J, Zhu Y, Huang W, Qin B, Guan X, He Z, Solar M. Micro-to-nano oncolytic microbial system shifts from tumor killing to tumor draining lymph nodes remolding for enhanced immunotherapy. Adv Mater. 2023;16:2306488.


    Google Scholar
     

  • Paukner S, Kohl G, Lubitz W. Bacterial ghosts as novel superior drug supply programs: antiproliferative exercise of loaded doxorubicin in human Caco-2 cells. J Management Launch. 2004;94(1):63–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stein E, Inic-Kanada A, Belij S, Montanaro J, Bintner N, Schlacher S, Mayr UB, Lubitz W, Stojanovic M, Najdenski H, Barisani-Asenbauer T. In vitro and in vivo uptake research of Escherichia coli Nissle 1917 bacterial ghosts: cell-based supply system to focus on ocular floor ailments. Make investments Ophthalmol Vis Sci. 2013;54(9):6326–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koller VJ, Dirsch VM, Beres H, Donath O, Reznicek G, Lubitz W, Kudela P. Modulation of bacterial ghosts–induced nitric oxide manufacturing in macrophages by bacterial ghost-delivered resveratrol. FEBS J. 2013;280(5):1214–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, Zhong L, Xu J, Zhuang Q, Gong F, Chen X, Tao H, Hu C, Huang F, Yang N, Li J. Oncolytic mineralized micro organism as potent regionally administered immunotherapeutics. Nat Biomed Eng. 2024;21:1–8.


    Google Scholar
     

  • Adler HI, Fisher WD, Cohen A, Hardigree AA. Miniature Escherichia coli cells poor in DNA. Proc Natl Acad Sci. 1967;57(2):321–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Ventura B, Sourjik V. Self-organized partitioning of dynamically localized proteins in bacterial cell division. Mol Syst Biol. 2011;7(1):457.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khachatourians GG, Clark DJ, Adler HI, Hardigree AA. Cell progress and division in Escherichia coli: a typical genetic management concerned in cell division and minicell formation. J Bacteriol. 1973;116(1):226–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inselburg J. Replication of colicin E1 plasmid DNA in minicells from a novel replication initiation web site. Proc Natl Acad Sci. 1974;71(6):2256–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar Ok, Brahmbhatt VN, Phillips L, Pattison ST, Petti C, Stillman B. Sequential therapy of drug-resistant tumors with focused minicells containing siRNA or a cytotoxic drug. Nat Biotechnol. 2009;27(7):643–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mujahid MH, Upadhyay TK, Upadhye VJ. Focused identification of antibacterial phytocompounds from plant extracts in opposition to multidrug-resistant micro organism: a scientific overview.

  • Kudela P, Koller VJ, Lubitz W. Bacterial ghosts (BGs)—superior antigen and drug supply system. Vaccine. 2010;28(36):5760–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao J, Chu D, Wang Z. Cell membrane-formed nanovesicles for disease-targeted supply. J Management Launch. 2016;28(224):208–16.

    Article 

    Google Scholar
     

  • Gao J, Dong X, Su Y, Wang Z. Human neutrophil membrane-derived nanovesicles as a drug supply platform for improved remedy of infectious ailments. Acta Biomater. 2021;15(123):354–63.

    Article 

    Google Scholar
     

  • Gao J, Dong X, Wang Z. Era, purification and engineering of extracellular vesicles and their biomedical functions. Strategies. 2020;1(177):114–25.

    Article 

    Google Scholar
     

  • Wang S, Gao J, Li M, Wang L, Wang Z. A facile strategy for improvement of a vaccine manufactured from bacterial double-layered membrane vesicles (DMVs). Biomaterials. 2018;1(187):28–38.

    Article 

    Google Scholar
     

  • Wang S, Gao J, Wang Z. Outer membrane vesicles for vaccination and focused drug supply. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(2): e1523.

    Article 
    PubMed 

    Google Scholar
     

  • Toyofuku M, Nomura N, Eberl L. Varieties and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17(1):13–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerritzen MJ, Martens DE, Wijffels RH, van der Pol L, Stork M. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol Adv. 2017;35(5):565–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu R, Liu H, Wang M, Li J, Lin H, Liang M, Gao Y, Yang M. An OMV-based nanovaccine confers security and safety in opposition to pathogenic Escherichia coli by way of each humoral and predominantly Th1 immune responses in poultry. Nanomaterials. 2020;10(11):2293.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulp A, Kuehn MJ. Organic capabilities and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol. 2010;13(64):163–84.

    Article 

    Google Scholar
     

  • Mujahid MH, Upadhyay TK, Khan F, Pandey P, Park MN, Sharangi AB, Saeed M, Upadhye VJ, Kim B. Metallic and metallic oxide-derived nanohybrid as a device for biomedical functions. Biomed Pharmacother. 2022;1(155):113791.

    Article 

    Google Scholar
     

  • Lee EY, Choi DS, Kim KP, Gho YS. Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom Rev. 2008;27(6):535–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. Bacterial vesicles in marine ecosystems. Science. 2014;343(6167):183–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schertzer JW, Whiteley M. A bilayer-couple mannequin of bacterial outer membrane vesicle biogenesis. MBio. 2012;3(2):10–128.

    Article 

    Google Scholar
     

  • Kohl P, Zingl FG, Eichmann TO, Schild S. Isolation of outer membrane vesicles together with their quantitative and qualitative analyses. In: Sikora A, editor. Vibrio cholerae: strategies and protocols. New York: Humana Press; 2018. p. 117–34.

    Chapter 

    Google Scholar
     

  • Alzahrani H, Winter J, Boocock D, De Girolamo L, Forsythe SJ. Characterization of outer membrane vesicles from a neonatal meningitic pressure of Cronobacter sakazakii. FEMS Microbiol Lett. 2015;362(12): fnv085.

    Article 
    PubMed 

    Google Scholar
     

  • Badamchi A, Bahrami F, Tasbiti AH, Yari S, Shafiei M, Shahcheraghi F, Siadat SD. Immuno-proteomics evaluation between OMV of vaccine and dominant wild kind strains of Bordetella pertussis in Iran. Iran J Microbiol. 2020;12(2):77.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitt S, Prokisch H, Schlunck T, Camp DG, Ahting U, Waizenegger T, Scharfe C, Meitinger T, Imhof A, Neupert W, Oefner PJ. Proteome evaluation of mitochondrial outer membrane from Neurospora crassa. Proteomics. 2006;6(1):72–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McBroom AJ, Kuehn MJ. Launch of outer membrane vesicles by Gram-negative micro organism is a novel envelope stress response. Mol Microbiol. 2007;63(2):545–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eddy JL, Gielda LM, Caulfield AJ, Rangel SM, Lathem WW. Manufacturing of outer membrane vesicles by the plague pathogen Yersinia pestis. PLoS ONE. 2014;9(9): e107002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim OY, Choi SJ, Jang SC, Park KS, Kim SR, Choi JP, Lim JH, Lee SW, Park J, Di Vizio D, Lötvall J. Bacterial protoplast-derived nanovesicles as vaccine supply system in opposition to bacterial an infection. Nano Lett. 2015;15(1):266–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim OY, Dinh NT, Park HT, Choi SJ, Hong Ok, Gho YS. Bacterial protoplast-derived nanovesicles for tumor focused supply of chemotherapeutics. Biomaterials. 2017;1(113):68–79.

    Article 

    Google Scholar
     

  • Kuerban Ok, Gao X, Zhang H, Liu J, Dong M, Wu L, Ye R, Feng M, Ye L. Doxorubicin-loaded bacterial outer-membrane vesicles exert enhanced anti-tumor efficacy in non-small-cell lung most cancers. Acta Pharm Sin B. 2020;10(8):1534–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, Qin X, Wu T, Qiao Q, Music Q, Zhang Z. Extracellular vesicles primarily based self-grown gold nanopopcorn for combinatorial chemo-photothermal remedy. Biomaterials. 2019;1(197):220–8.

    Article 

    Google Scholar
     

  • Gao J, Wang S, Dong X, Wang Z. RGD-expressed bacterial membrane-derived nanovesicles improve most cancers remedy by way of a number of tumorous concentrating on. Theranostics. 2021;11(7):3301.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown L, Wolf JM, Prados-Rosales R, Casadevall A. By way of the wall: extracellular vesicles in Gram-positive micro organism, mycobacteria and fungi. Nat Rev Microbiol. 2015;13(10):620–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Defourny KA, Smid EJ, Abee T. Gram-positive bacterial extracellular vesicles and their affect on well being and illness. Entrance Microbiol. 2018;9(9):1502.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim JH, Lee J, Park J, Gho YS. Gram-negative and Gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol. 2015;40:97–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, Eisenstein F, Hsiao CC, Kurosawa M, Gademann Ok, Pilhofer M, Nomura N, Eberl L. Prophage-triggered membrane vesicle formation by way of peptidoglycan injury in Bacillus subtilis. Nat Commun. 2017;8(1):481.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsollier L, Brodin P, Jackson M, Korduláková J, Tafelmeyer P, Carbonnelle E, Aubry J, Milon G, Legras P, André JP, Leroy C. Influence of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog. 2007;3(5): e62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klieve AV, Yokoyama MT, Forster RJ, Ouwerkerk D, Bain PA, Mawhinney EL. Naturally occurring DNA switch system related to membrane vesicles in cellulolytic Ruminococcus spp. of ruminal origin. Appl Environ Microbiol. 2005;71(8):4248–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tzipilevich E, Habusha M, Ben-Yehuda S. Acquisition of phage sensitivity by micro organism by way of trade of phage receptors. Cell. 2017;168(1):186–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez GM, Prados-Rosales R. Capabilities and significance of mycobacterial extracellular vesicles. Appl Microbiol Biotechnol. 2016;100:3887–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee J, Lee EY, Kim SH, Kim DK, Park KS, Kim KP, Kim YK, Roh TY, Gho YS. Staphylococcus aureus extracellular vesicles carry biologically lively β-lactamase. Antimicrob Brokers Chemother. 2013;57(6):2589–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olaya-Abril A, Prados-Rosales R, McConnell MJ, Martín-Peña R, González-Reyes JA, Jiménez-Munguía I, Gómez-Gascón L, Fernández J, Luque-García JL, García-Lidón C, Estévez H. Characterization of protecting extracellular membrane-derived vesicles produced by Streptococcus pneumoniae. J Proteomics. 2014;25(106):46–60.

    Article 

    Google Scholar
     

  • Lee WH, Choi HI, Hong SW, Kim KS, Gho YS, Jeon SG. Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects in opposition to bacteria-induced lethality by way of each humoral and mobile immunity. Exp Mol Med. 2015;47(9): e183.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenbach M. Bacterial chemotaxis. eLS. 2001. https://doi.org/10.1038/npg.els.0001251.

    Article 

    Google Scholar
     

  • Sitti M. Voyage of the microrobots. Nature. 2009;458(7242):1121–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sitti M. Microscale and nanoscale robotics programs [grand challenges of robotics]. IEEE Robotic Autom Magazine. 2007;14(1):53–60.

    Article 

    Google Scholar
     

  • Diller E, Sitti M. Micro-scale cell robotics. Discovered Traits® Robotic. 2013;2(3):143–259.

    Article 

    Google Scholar
     

  • Vikram Singh A, Sitti M. Focused drug supply and imaging utilizing cell milli/microrobots: a promising future in direction of theranostic pharmaceutical design. Curr Pharm Des. 2016;22(11):1418–28.

    Article 

    Google Scholar
     

  • Carlsen RW, Sitti M. Bio-hybrid cell-based actuators for microsystems. Small. 2014;10(19):3831–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim D, Liu A, Diller E, Sitti M. Chemotactic steering of micro organism propelled microbeads. Biomed Microdevice. 2012;14:1009–17.

    Article 
    CAS 

    Google Scholar
     

  • Jo SD, Ku SH, Gained YY, Kim SH, Kwon IC. Focused nanotheranostics for future personalised medication: latest progress in most cancers remedy. Theranostics. 2016;6(9):1362.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Au JL, Abbiati RA, Wientjes MG, Lu Z. Goal web site supply and residence of nanomedicines: software of quantitative programs pharmacology. Pharmacol Rev. 2019;71(2):157–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mujahid MH, Upadhyay TK, Upadhye VJ, Mathad PS. Antioxidant, antimicrobial, antidiabetic, antiglycation, and biocompatibility potential of Aqueous Zingiber officinale Rhizome (AZOME) Extract.

  • Stauber JM, Qian EA, Han Y, Rheingold AL, Král P, Fujita D, Spokoyny AM. An organometallic technique for assembling atomically exact hybrid nanomaterials. J Am Chem Soc. 2019;142(1):327–34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling D, Lee N, Hyeon T. Chemical synthesis and meeting of uniformly sized iron oxide nanoparticles for medical functions. Acc Chem Res. 2015;48(5):1276–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das P, Fatehbasharzad P, Colombo M, Fiandra L, Prosperi D. Multifunctional magnetic gold nanomaterials for most cancers. Traits Biotechnol. 2019;37(9):995–1010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu D, Roy S, Liu Z, Weller H, Parak WJ, Feliu N. Remotely managed opening of supply autos and launch of cargo by exterior triggers. Adv Drug Deliv Rev. 2019;1(138):117–32.

    Article 

    Google Scholar
     

  • Chen L, Zhou L, Wang C, Han Y, Lu Y, Liu J, Hu X, Yao T, Lin Y, Liang S, Shi S. Tumor-targeted drug and CpG supply system for phototherapy and docetaxel-enhanced immunotherapy with polarization towards M1-type macrophages on triple unfavorable breast cancers. Adv Mater. 2019;31(52):1904997.

    Article 
    CAS 

    Google Scholar
     

  • Cun X, Chen J, Li M, He X, Tang X, Guo R, Deng M, Li M, Zhang Z, He Q. Tumor-associated fibroblast-targeted regulation and deep tumor supply of chemotherapeutic medication with a multifunctional size-switchable nanoparticle. ACS Appl Mater Interfaces. 2019;11(43):39545–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cartmell T, Mitchell D, Lamond FJ, Laburn HP. Route of administration differentially impacts fevers induced by Gram-negative and Gram-positive pyrogens in rabbits. Exp Physiol. 2002;87(3):391–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cortes-Perez NG, Lefèvre F, Corthier G, Adel-Affected person Ok, Langella P, Bermúdez-Humarán LG. Affect of the route of immunization and the character of the bacterial vector on immunogenicity of mucosal vaccines primarily based on lactic acid micro organism. Vaccine. 2007;25(36):6581–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crull Ok, Bumann D, Weiss S. Affect of an infection route and virulence elements on colonization of stable tumors by Salmonella enterica serovar Typhimurium. FEMS Immunol Med Microbiol. 2011;62(1):75–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM. Tumor-targeting bacterial remedy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci. 2005;102(3):755–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenberg GA. Neurological ailments in relation to the blood–mind barrier. J Cereb Blood Move Metab. 2012;32(7):1139–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Sorge NM, Doran KS. Protection on the border: the blood–mind barrier versus bacterial foreigners. Future Microbiol. 2012;7(3):383–94.

    Article 
    PubMed 

    Google Scholar
     

  • Zwagerman NT, Friedlander RM, Monaco EA III. Intratumoral Clostridium novyi as a possible therapy for stable necrotic mind tumors. Neurosurgery. 2014;75(6):N17–8.

    Article 
    PubMed 

    Google Scholar
     

  • Lee CH. Engineering micro organism towards tumor concentrating on for most cancers therapy: present state and views. Appl Microbiol Biotechnol. 2012;93:517–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Zhou M, Luo D, Wang L, Hong Y, Yang Y, Sha Y. Micro organism-mediated in vivo supply of quantum dots into stable tumor. Biochem Biophys Res Commun. 2012;425(4):769–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganai S, Arenas RB, Sauer JP, Bentley B, Forbes NS. In tumors Salmonella migrate away from vasculature towards the transition zone and induce apoptosis. Most cancers Gene Ther. 2011;18(7):457–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loeffler M, Le’Negrate G, Krajewska M, Reed JC. Inhibition of tumor progress utilizing Salmonella expressing Fas ligand. J Natl Most cancers Inst. 2008;100(15):1113–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yam C, Zhao M, Hayashi Ok, Ma H, Kishimoto H, McElroy M, Bouvet M, Hoffman RM. Monotherapy with a tumor-targeting mutant of S. typhimurium inhibits liver metastasis in a mouse mannequin of pancreatic most cancers. J Surg Res. 2010;164(2):248–55.

    Article 
    PubMed 

    Google Scholar
     

  • Sant S, Tao SL, Fisher OZ, Xu Q, Peppas NA, Khademhosseini A. Microfabrication applied sciences for oral drug supply. Adv Drug Deliv Rev. 2012;64(6):496–507.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sastry SV, Nyshadham JR, Repair JA. Latest technological advances in oral drug supply—a overview. Pharm Sci Technol At present. 2000;3(4):138–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devriendt B, De Geest BG, Goddeeris BM, Cox E. Crossing the barrier: concentrating on epithelial receptors for enhanced oral vaccine supply. J Management Launch. 2012;160(3):431–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Correia-Pinto JF, Csaba N, Alonso MJ. Vaccine supply carriers: insights and future views. Int J Pharm. 2013;440(1):27–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urbanska AM, Karagiannis ED, Au AS, Dai SY, Mozafari M, Prakash S. What’s subsequent for gastrointestinal issues: no needles? J Management Launch. 2016;10(221):48–61.

    Article 

    Google Scholar
     

  • Berlec A, Ravnikar M, Štrukelj B. Lactic acid micro organism as oral supply programs for biomolecules. Die Pharm Int J Pharm Sci. 2012;67(11):891–8.

    CAS 

    Google Scholar
     

  • Hanson ML, Hixon JA, Li W, Felber BK, Anver MR, Stewart CA, Janelsins BM, Datta SK, Shen W, McLean MH, Durum SK. Oral supply of IL-27 recombinant micro organism attenuates immune colitis in mice. Gastroenterology. 2014;146(1):210–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robert S, Gysemans C, Takiishi T, Korf H, Spagnuolo I, Sebastiani G, Van Huynegem Ok, Steidler L, Caluwaerts S, Demetter P, Wasserfall CH. Oral supply of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes. 2014;63(8):2876–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo S, Yan W, McDonough SP, Lin N, Wu KJ, He H, Xiang H, Yang M, Moreira MA, Chang YF. The recombinant Lactococcus lactis oral vaccine induces safety in opposition to C. difficile spore problem in a mouse mannequin. Vaccine. 2015;33(13):1586–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed B, Loos M, Vanrompay D, Cox E. Oral immunization with Lactococcus lactis-expressing EspB induces protecting immune responses in opposition to Escherichia coli O157: H7 in a murine mannequin of colonization. Vaccine. 2014;32(31):3909–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei P, Yang Y, Liu Z, Huang J, Gong Y, Solar H. Oral Bifidobacterium longum expressing alpha-melanocyte-stimulating hormone to struggle experimental colitis. Drug Deliv. 2016;23(6):2058–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takei S, Omoto C, Kitagawa Ok, Morishita N, Katayama T, Shigemura Ok, Fujisawa M, Kawabata M, Hotta H, Shirakawa T. Oral administration of genetically modified Bifidobacterium displaying HCV-NS3 multi-epitope fusion protein may induce an HCV-NS3-specific systemic immune response in mice. Vaccine. 2014;32(25):3066–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Z, Huang Z, Sao C, Huang Y, Zhang F, Yang J, Lian J, Zeng Z, Luo W, Zeng W, Deng Q. Bifidobacterium as an oral supply provider of interleukin-12 for the therapy of Coxsackie virus B3-induced myocarditis within the Balb/c mice. Int Immunopharmacol. 2012;12(1):125–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ning JF, Zhu W, Xu JP, Zheng CY, Meng XL. Oral supply of DNA vaccine encoding VP28 in opposition to white spot syndrome virus in crayfish by attenuated Salmonella typhimurium. Vaccine. 2009;27(7):1127–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen G, Wei DP, Jia LJ, Tang B, Shu L, Zhang Ok, Xu Y, Gao J, Huang XF, Jiang WH, Hu QG. Oral supply of tumor-targeting Salmonella displays promising therapeutic efficacy and low toxicity. Most cancers Sci. 2009;100(12):2437–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grillot-Courvalin C, Goussard S, Courvalin P, Silva A, Bodyak N, Vaze M, Sauer N, Laroux FS, Harborth J, Xiang S, Li CJ. Improvement of a therapeutic RNAi supply system utilizing nonpathogenic micro organism expressing inv and hly: transkingdom RNA interference (tkRNAi). Inhuman Gene Remedy. 2009;20(6):670–670.


    Google Scholar
     

  • Ivory Ok, Chambers SJ, Pin C, Prieto E, Arques JL, Nicoletti C. Oral supply of Lactobacillus casei Shirota modifies allergen-induced immune responses in allergic rhinitis. Clin Exp Allergy. 2008;38(8):1282–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huq T, Khan A, Khan RA, Riedl B, Lacroix M. Encapsulation of probiotic micro organism in biopolymeric system. Crit Rev Meals Sci Nutr. 2013;53(9):909–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sohail A, Turner MS, Coombes A, Bostrom T, Bhandari B. Survivability of probiotics encapsulated in alginate gel microbeads utilizing a novel impinging aerosols technique. Int J Meals Microbiol. 2011;145(1):162–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urbanska AM, Bhathena J, Prakash S. Stay encapsulated Lactobacillus acidophilus cells in yogurt for therapeutic oral supply: preparation and in vitro evaluation of alginate–chitosan microcapsules. Can J Physiol Pharmacol. 2007;85(9):884–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang T, Singh B, Maharjan S, Li HS, Kang SK, Bok JD, Cho CS, Choi YJ. Oral supply of probiotic expressing M cell homing peptide conjugated BmpB vaccine encapsulated into alginate/chitosan/alginate microcapsules. Eur J Pharm Biopharm. 2014;88(3):768–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mei L, He F, Zhou RQ, Wu CD, Liang R, Xie R, Ju XJ, Wang W, Chu LY. Novel intestinal-targeted Ca-alginate-based provider for pH-responsive safety and launch of lactic acid micro organism. ACS Appl Mater Interfaces. 2014;6(8):5962–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cook dinner MT, Tzortzis G, Khutoryanskiy VV, Charalampopoulos D. Layer-by-layer coating of alginate matrices with chitosan–alginate for the improved survival and focused supply of probiotic micro organism after oral administration. J Mater Chem B. 2013;1(1):52–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin J, Yu W, Liu X, Xie H, Wang W, Ma X. In vitro and in vivo characterization of alginate-chitosan-alginate synthetic microcapsules for therapeutic oral supply of dwell bacterial cells. J Biosci Bioeng. 2008;105(6):660–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danino T, Prindle A, Kwong GA, Skalak M, Li H, Allen Ok, Hasty J, Bhatia SN. Programmable probiotics for detection of most cancers in urine. Scie Transl Med. 2015;7(289):289ra84.


    Google Scholar
     

  • Bermudes D, Low B, Pawelek J. Tumor-targeted Salmonella: extremely selective supply vectors. In: Habib NA, editor. Most cancers gene remedy previous achievements and future challenges. New York: Springer; 2002. p. 57–63.

    Chapter 

    Google Scholar
     

  • Paton AW, Morona R, Paton JC. Bioengineered microbes in illness remedy. Traits Mol Med. 2012;18(7):417–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciabattini A, Pettini E, Andersen P, Pozzi G, Medaglini D. Main activation of antigen-specific naive CD4+ and CD8+ T cells following intranasal vaccination with recombinant micro organism. Infect Immun. 2008;76(12):5817–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ciabattini A, Giomarelli B, Parigi R, Chiavolini D, Pettini E, Aricò B, Giuliani MM, Santini L, Medaglini D, Pozzi G. Intranasal immunization of mice with recombinant Streptococcus gordonii expressing NadA of Neisseria meningitidis induces systemic bactericidal antibodies and native IgA. Vaccine. 2008;26(33):4244–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Izumo T, Maekawa T, Ida M, Noguchi A, Kitagawa Y, Shibata H, Yasui H, Kiso Y. Impact of intranasal administration of Lactobacillus pentosus S-PT84 on influenza virus an infection in mice. Int Immunopharmacol. 2010;10(9):1101–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kotnik T, Rems L, Tarek M, Miklavčič D. Membrane electroporation and electropermeabilization: mechanisms and fashions. Annu Rev Biophys. 2019;6(48):63–91.

    Article 

    Google Scholar
     

  • Zoaby N, Shainsky-Roitman J, Badarneh S, Abumanhal H, Leshansky A, Yaron S, Schroeder A. Autonomous bacterial nanoswimmers goal most cancers. J Management Launch. 2017;10(257):68–75.

    Article 

    Google Scholar
     

  • Xie S, Zhang P, Zhang Z, Liu Y, Chen M, Li S, Li X. Bacterial navigation for tumor concentrating on and photothermally-triggered bacterial ghost transformation for spatiotemporal drug launch. Acta Biomater. 2021;1(131):172–84.

    Article 

    Google Scholar
     

  • Nguyen VH, Kim HS, Ha JM, Hong Y, Choy HE, Min JJ. Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for most cancers. Can Res. 2010;70(1):18–23.

    Article 
    CAS 

    Google Scholar
     

  • Chou CK, Hung JY, Liu JC, Chen CT, Hung MC. An attenuated Salmonella oral DNA vaccine prevents the expansion of hepatocellular carcinoma and colon most cancers that categorical α-fetoprotein. Most cancers Gene Ther. 2006;13(8):746–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon W, Park YC, Kim J, Chae YS, Byeon JH, Min SH, Park S, Yoo Y, Park YK, Kim BM. Software of genetically engineered Salmonella typhimurium for interferon-gamma–induced remedy in opposition to melanoma. Eur J Most cancers. 2017;1(70):48–61.

    Article 

    Google Scholar
     

  • Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J, Allen Ok, Julio E, Atolia E, Tsimring LS, Bhatia SN, Hasty J. Synchronized cycles of bacterial lysis for in vivo supply. Nature. 2016;536(7614):81–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen DH, Chong A, Hong Y, Min JJ. Bioengineering of micro organism for most cancers immunotherapy. Nat Commun. 2023;14(1):3553.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing J, Yin T, Li S, Xu T, Ma A, Chen Z, Luo Y, Lai Z, Lv Y, Pan H, Liang R. Focused most cancers remedy: sequential magneto-actuated and optics-triggered biomicrorobots for focused most cancers remedy. Adv Funct Mater. 2021;31(11):2170074.

    Article 

    Google Scholar
     

  • Deng X, Yang W, Shao Z, Zhao Y. Genetically modified micro organism for focused phototherapy of tumor. Biomaterials. 2021;1(272):120809.

    Article 

    Google Scholar
     

  • Min JJ, Nguyen VH, Kim HJ, Hong Y, Choy HE. Quantitative bioluminescence imaging of tumor-targeting micro organism in dwelling animals. Nat Protoc. 2008;3(4):629–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uebe R, Schüler D. Magnetosome biogenesis in magnetotactic micro organism. Nat Rev Microbiol. 2016;14(10):621–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mowday AM, Copp JN, Syddall SP, Dubois LJ, Wang J, Lieuwes NG, Biemans R, Ashoorzadeh A, Abbattista MR, Williams EM, Guise CP. E. coli nitroreductase NfsA is a reporter gene for non-invasive PET imaging in most cancers gene remedy functions. Theranostics. 2020;10(23):10548.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Music J, Yu W, Chen M, Li G, Chen J, Chen L, Yu L, Chen Y. Engineering photothermal and H2S-producing dwelling nanomedicine by bacteria-enabled self-mineralization. Adv Funct Mater. 2024. https://doi.org/10.1002/adfm.202400929.

    Article 
    PubMed 

    Google Scholar
     

  • Felgner S, Frahm M, Kocijancic D, Rohde M, Eckweiler D, Bielecka A, Bueno E, Cava F, Abraham WR, Curtiss R III, Häussler S. aroA-deficient Salmonella enterica serovar Typhimurium is greater than a metabolically attenuated mutant. MBio. 2016;7(5):10–128.

    Article 

    Google Scholar
     

  • Paster E, Ryu WS. The thermal impulse response of Escherichia coli. Proc Natl Acad Sci. 2008;105(14):5373–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Zeng Y, Zhao Y, Peng X, Ren E, Liu G. Bio-hybrid magnetic robots: from bioengineering to focused remedy. Bioengineering. 2024;11(4):311.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nauts HC, Swift WE, Coley BL. The therapy of malignant tumors by bacterial toxins as developed by the late William B. Coley, MD, reviewed within the mild of recent analysis. Most cancers Res. 1946;6(4):205–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen F, Zang Z, Chen Z, Cui L, Chang Z, Ma A, Yin T, Liang R, Han Y, Wu Z, Zheng M. Nanophotosensitizer-engineered Salmonella micro organism with hypoxia concentrating on and photothermal-assisted mutual bioaccumulation for stable tumor remedy. Biomaterials. 2019;1(214):119226.

    Article 

    Google Scholar
     

  • Chen Q, Bai H, Wu W, Huang G, Li Y, Wu M, Tang G, Ping Y. Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced most cancers immunotherapy and metastasis prevention. Nano Lett. 2019;20(1):11–21.

    Article 
    PubMed 

    Google Scholar
     

  • Li F, Zhu P, Zheng B, Lu Z, Fang C, Fu Y, Li X. A personalized biohybrid presenting cascade responses to tumor microenvironment. Adv Mater. 2024;9:2404901.

    Article 

    Google Scholar
     

  • Chen W, Wang Y, Qin M, Zhang X, Zhang Z, Solar X, Gu Z. Micro organism-driven hypoxia concentrating on for mixed biotherapy and photothermal remedy. ACS Nano. 2018;12(6):5995–6005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao J, Su Y, Wang Z. Engineering bacterial membrane nanovesicles for improved therapies in infectious ailments and most cancers. Adv Drug Deliv Rev. 2022;1(186):114340.

    Article 

    Google Scholar
     

  • Han JW, Choi YJ, Cho S, Zheng S, Ko SY, Park JO, Park S. Lively tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with concentrating on micro organism (Salmonella Typhimurium). Sens Actuators B Chem. 2016;1(224):217–24.


    Google Scholar
     

  • Ektate Ok, Munteanu MC, Ashar H, Malayer J, Ranjan A. Chemo-immunotherapy of colon most cancers with targeted ultrasound and Salmonella-laden temperature delicate liposomes (thermobots). Sci Rep. 2018;8(1):13062.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park BW, Zhuang J, Yasa O, Sitti M. Multifunctional bacteria-driven microswimmers for focused lively drug supply. ACS Nano. 2017;11(9):8910–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alapan Y, Yasa O, Schauer O, Giltinan J, Tabak AF, Sourjik V, Sitti M. Mushy erythrocyte-based bacterial microswimmers for cargo supply. Sci Robotic. 2018;3(17): eaar4423.

    Article 
    PubMed 

    Google Scholar
     

  • Quispe-Tintaya W, Chandra D, Jahangir A, Harris M, Casadevall A, Dadachova E, Gravekamp C. Unhazardous radioactive Listeriaat is a extremely efficient remedy in opposition to metastatic pancreatic most cancers. Proc Natl Acad Sci. 2013;110(21):8668–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandra D, Selvanesan BC, Yuan Z, Libutti SK, Koba W, Beck A, Zhu Ok, Casadevall A, Dadachova E, Gravekamp C. 32-Phosphorus selectively delivered by listeria to pancreatic most cancers demonstrates a robust therapeutic impact. Oncotarget. 2017;8(13):20729.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan JX, Peng MY, Wang H, Zheng HR, Liu ZL, Li CX, Wang XN, Liu XH, Cheng SX, Zhang XZ. Engineered bacterial bioreactor for tumor remedy by way of Fenton-like response with localized H2O2 era. Adv Mater. 2019;31(16):1808278.

    Article 

    Google Scholar
     

  • Zheng JH, Nguyen VH, Jiang SN, Park SH, Tan W, Hong SH, Shin MG, Chung IJ, Hong Y, Bom HS, Choy HE. Two-step enhanced most cancers immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med. 2017;9(376): eaak9537.

    Article 
    PubMed 

    Google Scholar
     

  • Nishikawa H, Sato E, Briones G, Chen LM, Matsuo M, Nagata Y, Ritter G, Jäger E, Nomura H, Kondo S, Tawara I. In vivo antigen supply by a Salmonella typhimurium kind III secretion system for therapeutic most cancers vaccines. J Clin Investig. 2006;116(7):1946–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang SN, Park SH, Lee HJ, Zheng JH, Kim HS, Bom HS, Hong Y, Szardenings M, Shin MG, Kim SC, Ntziachristos V. Engineering of micro organism for the visualization of focused supply of a cytolytic anticancer agent. Mol Ther. 2013;21(11):1985–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacDiarmid JA, Langova V, Bailey D, Pattison ST, Pattison SL, Christensen N, Armstrong LR, Brahmbhatt VN, Smolarczyk Ok, Harrison MT, Costa M. Focused doxorubicin supply to mind tumors by way of minicells: proof of precept utilizing canines with spontaneously occurring tumors as a mannequin. PLoS ONE. 2016;11(4): e0151832.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solomon BJ, Desai J, Rosenthal M, McArthur GA, Pattison ST, Pattison SL, MacDiarmid J, Brahmbhatt H, Scott AM. A primary-time-in-human section I scientific trial of bispecific antibody-targeted, paclitaxel-packaged bacterial minicells. PLoS ONE. 2015;10(12): e0144559.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sagnella SM, Yang L, Stubbs GE, Boslem E, Martino-Echarri E, Smolarczyk Ok, Pattison SL, Vanegas N, Clair ES, Clarke S, Boockvar J. Cyto-immuno-therapy for most cancers: a pathway elicited by tumor-targeted, cytotoxic drug-packaged bacterially derived nanocells. Most cancers Cell. 2020;37(3):354–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sagnella SM, Trieu J, Brahmbhatt H, MacDiarmid JA, MacMillan A, Whan RM, Fife CM, McCarroll JA, Gifford AJ, Ziegler DS, Kavallaris M. Focused doxorubicin-loaded bacterially derived nano-cells for the therapy of neuroblastoma. Mol Most cancers Ther. 2018;17(5):1012–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whittle JR, Lickliter JD, Gan HK, Scott AM, Simes J, Solomon BJ, MacDiarmid JA, Brahmbhatt H, Rosenthal MA. First in human nanotechnology doxorubicin supply system to focus on epidermal progress issue receptors in recurrent glioblastoma. J Clin Neurosci. 2015;22(12):1889–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gujrati V, Prakash J, Malekzadeh-Najafabadi J, Stiel A, Klemm U, Mettenleiter G, Aichler M, Walch A, Ntziachristos V. Bioengineered bacterial vesicles as organic nano-heaters for optoacoustic imaging. Nat Commun. 2019;10(1):1114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carleton HA, Lara-Tejero M, Liu X, Galán JE. Engineering the sort III secretion system in non-replicating bacterial minicells for antigen supply. Nat Commun. 2013;4(1):1590.

    Article 
    PubMed 

    Google Scholar
     

  • Schetters ST, Jong WS, Horrevorts SK, Kruijssen LJ, Engels S, Stolk D, Daleke-Schermerhorn MH, Garcia-Vallejo J, Houben D, Unger WW, den Haan JM. Outer membrane vesicles engineered to specific membrane-bound antigen program dendritic cells for cross-presentation to CD8+ T cells. Acta Biomater. 2019;1(91):248–57.

    Article 

    Google Scholar
     

  • Huang W, Shu C, Hua L, Zhao Y, Xie H, Qi J, Gao F, Gao R, Chen Y, Zhang Q, Li W. Modified bacterial outer membrane vesicles induce autoantibodies for tumor remedy. Acta Biomater. 2020;1(108):300–12.

    Article 

    Google Scholar
     

  • Chen Q, Huang G, Wu W, Wang J, Hu J, Mao J, Chu PK, Bai H, Tang G. A hybrid eukaryotic–prokaryotic nanoplatform with photothermal modality for enhanced antitumor vaccination. Adv Mater. 2020;32(16):1908185.

    Article 
    CAS 

    Google Scholar
     

  • Akin D, Sturgis J, Ragheb Ok, Sherman D, Burkholder Ok, Robinson JP, Bhunia AK, Mohammed S, Bashir R. Micro organism-mediated supply of nanoparticles and cargo into cells. Nat Nanotechnol. 2007;2(7):441–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie S, Zhao L, Music X, Tang M, Mo C, Li X. Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to realize tumor concentrating on and responsive drug launch. J Management Launch. 2017;28(268):390–9.

    Article 

    Google Scholar
     

  • Hu Q, Wu M, Fang C, Cheng C, Zhao M, Fang W, Chu PK, Ping Y, Tang G. Engineering nanoparticle-coated micro organism as oral DNA vaccines for most cancers immunotherapy. Nano Lett. 2015;15(4):2732–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie S, Chen M, Music X, Zhang Z, Zhang Z, Chen Z, Li X. Bacterial microbots for acid-labile launch of hybrid micelles to advertise the synergistic antitumor efficacy. Acta Biomater. 2018;15(78):198–210.

    Article 

    Google Scholar
     

  • Suh S, Jo A, Traore MA, Zhan Y, Coutermarsh-Ott SL, Ringel-Scaia VM, Allen IC, Davis RM, Behkam B. Nanoscale bacteria-enabled autonomous drug supply system (NanoBEADS) enhances intratumoral transport of nanomedicine. Adv Sci. 2019;6(3):1801309.

    Article 

    Google Scholar
     

  • Li Q, Chen H, Feng X, Yu C, Feng F, Chai Y, Lu P, Music T, Wang X, Yao L. Nanoparticle-regulated semiartificial magnetotactic micro organism with tunable magnetic second and magnetic sensitivity. Small. 2019;15(15):1900427.

    Article 

    Google Scholar
     

  • Moreno VM, Álvarez E, Izquierdo-Barba I, Baeza A, Serrano-López J, Vallet-Regí M. Micro organism as nanoparticles provider for enhancing penetration in a tumoral matrix mannequin. Adv Mater Interfaces. 2020;7(11):1901942.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng DW, Chen Y, Li ZH, Xu L, Li CX, Li B, Fan JX, Cheng SX, Zhang XZ. Optically-controlled bacterial metabolite for most cancers remedy. Nat Commun. 2018;9(1):1680.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park W, Cho S, Huang X, Larson AC, Kim DH. Branched gold nanoparticle coating of clostridium novyi-NT spores for CT-guided intratumoral injection. Small. 2017;13(5):1602722.

    Article 

    Google Scholar
     

  • Luo CH, Huang CT, Su CH, Yeh CS. Micro organism-mediated hypoxia-specific supply of nanoparticles for tumors imaging and remedy. Nano Lett. 2016;16(6):3493–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong H, Sarkes DA, Rice JJ, Hurley MM, Fu AJ, Stratis-Cullum DN. Residing micro organism–nanoparticle hybrids mediated by way of surface-displayed peptides. Langmuir. 2018;34(20):5837–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dogra N, Izadi H, Vanderlick TK. Micro-motors: a motile micro organism primarily based system for liposome cargo transport. Sci Rep. 2016;6(1):29369.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thamm DH, Kurzman ID, King I, Li Z, Sznol M, Dubielzig RR, Vail DM, MacEwen EG. Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to canines with spontaneous neoplasia: section I analysis. Clin Most cancers Res. 2005;11(13):4827–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heimann DM, Rosenberg SA. Steady intravenous administration of dwell genetically modified salmonella typhimurium in sufferers with metastatic melanoma. J Immunother. 2003;26(2):179.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • NCT00004216. ClinicalTrials.gov. http://www.clinicaltrials.gov/ct2/present/NCT00004216.

  • NCT00358397. ClinicalTrials.gov. http://www.clinicaltrials.gov/ct2/present/NCT00358397.

  • NCT01099631. ClinicalTrials.gov. http://www.clinicaltrials.gov/ct2/present/NCT01099631.

  • NCT01118819. ClinicalTrials.gov. http://www.clinicaltrials.gov/ct2/present/NCT01118819.

  • NCT01562626. ClinicalTrials.gov. http://www.clinicaltrials.gov/ct2/present/NCT01562626.

  • NCT01924689. ClinicalTrials.gov. http://www.clinicaltrials.gov/ct2/present/NCT01924689.

  • Leave a Reply

    Your email address will not be published. Required fields are marked *