Acid-degradable lipid nanoparticles improve the supply of mRNA

  • Tenchov, R., Sasso, J. M. & Zhou, Q. A. PEGylated lipid nanoparticle formulations: immunological security and effectivity perspective. Bioconjug. Chem. 34, 941–960 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller, S. S. et al. Biodegradable hyperbranched polyether–lipids with in-chain pH-sensitive linkages. Polym. Chem. 7, 6257–6268 (2016).

    Article 

    Google Scholar
     

  • Kedmi, R., Ben-Arie, N. & Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the position of Toll-like receptor 4 in immune activation. Biomaterials 31, 6867–6875 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huotari, J. & Helenius, A. Endosome maturation. EMBO J. 30, 3481–3500 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, W., Chan, J. M. & Farokhzad, O. C. pH-Responsive nanoparticles for drug supply. Mol. Pharm. 7, 1913–1920 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuo, S. et al. pH-sensitive biomaterials for drug supply. Molecules 25, 5649 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, J., Shum, P. & Thompson, D. H. Acid-triggered launch by way of dePEGylation of DOPE liposomes containing acid-labile vinyl ether PEG-lipids. J. Management. Launch 91, 187–200 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, X. & Szoka, F. C. Steric stabilization of fusogenic liposomes by a low-pH delicate PEG-diortho ester–lipid conjugate. Bioconjug. Chem. 12, 291–300 (2000).

    Article 

    Google Scholar
     

  • Jayaraman, M. et al. Maximizing the efficiency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 51, 8529–8533 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Solar, C., Wang, C., Jankovic, Okay. E. & Dong, Y. Lipids and lipid derivatives for RNA supply. Chem. Rev. 121, 12181–12277 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roise, J. J. et al. Acid-sensitive surfactants improve the supply of nucleic acids. Mol. Pharm. 19, 67–79 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, X. et al. Making good medication smarter: the significance of linker chemistry in focused drug supply. Med. Res. Rev. 40, 2682–2713 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B. & Thayumanavan, S. S. Substituent results on the pH sensitivity of acetals and ketals and their correlation with encapsulation stability in polymeric nanogels. J. Am. Chem. Soc. 139, 2306–2317 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and area parameters. Chem. Rev. 91, 165–195 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Takahata, Y. & Chong, D. P. Estimation of Hammett sigma constants of substituted benzenes via correct density-functional calculation of core–electron binding power shifts. Int. J. Quantum Chem. 103, 509–515 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Waggoner, L. E., Miyasaki, Okay. F. & Kwon, E. J. Evaluation of PEG-lipid anchor size on lipid nanoparticle pharmacokinetics and exercise in a mouse mannequin of traumatic mind harm. Biomater. Sci. 11, 4238–4253 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. Engineering lipid nanoparticles for enhanced intracellular supply of mRNA via inhalation. ACS Nano 16, 14792–14806 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the supply of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coelho, F., Salonen, L. M. & Silva, B. F. B. Hemiacetal-linked pH-sensitive PEG-lipids for non-viral gene supply. N. J. Chem. 46, 15414–15422 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fang, Y. et al. Cleavable PEGylation: a technique for overcoming the “PEG dilemma” in environment friendly drug supply. Drug Deliv. 24, 22–32 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozma, G. T., Shimizu, T., Ishida, T. & Szebeni, J. Anti-PEG antibodies: properties, formation, testing and position in adversarial immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 154-155, 163–175 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Polyethylene glycol (PEG)-associated immune responses triggered by clinically related lipid nanoparticles in rats. NPJ Vaccines 8, 169 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanez Arteta, M. et al. Profitable reprogramming of mobile protein manufacturing via mRNA delivered by functionalized lipid nanoparticles. Proc. Natl Acad. Sci. USA 115, E3351–E3360 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kilchrist, Okay. V. et al. Gal8 visualization of endosome disruption predicts carrier-mediated biologic drug intracellular bioavailability. ACS Nano 13, 1136–1152 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmiderer, L. et al. Environment friendly and non-toxic biomolecule supply to main human hematopoietic stem cells utilizing nanostraws. Proc. Natl Acad. Sci. USA 117, 21267–21273 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levetzow, G. V. et al. Nucleofection, an environment friendly non-viral methodology to switch genes into human hematopoietic stem and progenitor cells. Stem Cells Dev. 15, 278–285 (2006).

    Article 

    Google Scholar
     

  • Vhora, I., Lalani, R., Bhatt, P., Patil, S. & Misra, A. Lipid-nucleic acid nanoparticles of novel ionizable lipids for systemic BMP-9 gene supply to bone-marrow mesenchymal stem cells for osteoinduction. Int. J. Pharm. 563, 324–336 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, D., Toyonaga, S. & Anderson, D. G. In vivo RNA supply to hematopoietic stem and progenitor cells by way of focused lipid nanoparticles. Nano Lett. 23, 2938–2944 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, V. et al. Shielding of lipid nanoparticles for siRNA supply: impression on physicochemical properties, cytokine induction, and efficacy. Mol. Ther. Nucleic Acids 3, e210 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakurai, Y. et al. Environment friendly siRNA supply by lipid nanoparticles modified with a non-standard macrocyclic peptide for EpCAM-targeting. Mol. Pharm. 14, 3290–3298 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chander, N., Basha, G., Yan Cheng, M. H., Witzigmann, D. & Cullis, P. R. Lipid nanoparticle mRNA techniques containing excessive ranges of sphingomyelin engender increased protein expression in hepatic and extra-hepatic tissues. Mol. Ther. Strategies Clin. Dev. 30, 235–245 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruoslahti, E. Mind extracellular matrix. Glycobiology 6, 489–492 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dankovich, T. M. et al. Extracellular matrix transforming via endocytosis and resurfacing of Tenascin-R. Nat. Commun. 12, 7129 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ concentrating on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene enhancing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, Okay. A. The alternative of helper lipids with charged options in lipid nanoparticles facilitates focused mRNA supply to the spleen and lungs. J. Management. Launch 345, 819–831 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frohlich, E. The position of floor cost in mobile uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7, 5577–5591 (2012).

    Article 

    Google Scholar
     

  • Hu, M., Zhou, N., Cai, W. & Xu, H. Lysosomal solute and water transport. J. Cell Biol. 221, e202109133 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zahid, M. U., Ma, L., Lim, S. J. & Smith, A. M. Single quantum dot monitoring reveals the impression of nanoparticle floor on intracellular state. Nat. Commun. 9, 1830 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pei, Y. et al. Synthesis and bioactivity of readily hydrolysable novel cationic lipids for potential lung supply software of mRNAs. Chem. Phys. Lipids 243, 105178 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, M. et al. Lung-selective mRNA supply of artificial lipid nanoparticles for the remedy of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. et al. Engineering caveolae-targeted lipid nanoparticles to ship mRNA to the lungs. ACS Chem. Biol. 15, 830–836 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landesman-Milo, D. & Peer, D. Toxicity profiling of a number of widespread RNAi-based nanomedicines: a comparative examine. Drug Deliv. Transl. Res. 4, 96–103 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanders, L. M. & Zeisel, S. H. Choline: dietary necessities and position in mind growth. Nutr. In the present day 42, 181–186 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibellini, F. & Smith, T. Okay. The Kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62, 414–428 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raghu, G., Nyberg, F. & Morgan, G. The epidemiology of interstitial lung illness and its affiliation with lung most cancers. Br. J. Most cancers 91, S3–S10 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McAleer, J. P. & Kolls, J. Okay. Directing site visitors IL‐17 and IL‐22 coordinate pulmonary immune protection. Immunol. Rev. 260, 129–144 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muhl, H. et al. IL-22 in tissue-protective remedy. Br. J. Pharmacol. 169, 761–771 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizoguchi, A. et al. Medical significance of IL-22 cascade in IBD. J. Gastroenterol. 53, 465–474 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang, S., Feng, D. & Gao, B. Interleukin-22 acts as a mitochondrial protector. Theranostics 10, 7836–7840 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *