Microstrain screening in direction of defect-less layered transition steel oxide cathodes

  • Zhao, Y. et al. Suppressing ion migration in steel halide perovskite by way of interstitial doping with a hint quantity of multivalent cations. Nat. Mater. 21, 1396–1402 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chattot, R. et al. Floor distortion as a unifying idea and descriptor in oxygen discount response electrocatalysis. Nat. Mater. 17, 827–833 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chattot, R. et al. Past pressure and ligand results: microstrain-induced enhancement of the oxygen discount response kinetics on varied PtNi/C nanostructures. ACS Catal. 7, 398–408 (2016).

    Article 

    Google Scholar
     

  • Xu, G. L. et al. Native lattice pressure induced structural earthquake in sodium layered oxide cathodes. Nat. Commun. 13, 436 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G.-L. et al. Insights into the structural results of layered cathode supplies for top voltage sodium-ion batteries. Power Environ. Sci. 10, 1677–1693 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lee, E. J. et al. Growth of microstrain in aged lithium transition steel oxides. Nano Lett. 14, 4873–4880 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode supplies throughout battery charging. Nat. Power 3, 641–647 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, C. et al. Bulk fatigue induced by floor reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, P. et al. Coupling of electrochemically triggered thermal and mechanical results to irritate failure in a layered cathode. Nat. Commun. 9, 2437 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, P. et al. Intragranular cracking as a essential barrier for high-voltage utilization of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, G. L. et al. Challenges and methods to advance excessive‐power nickel‐wealthy layered lithium transition steel oxide cathodes for harsh operation. Adv. Funct. Mater. 30, 2004748 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nat. Power 7, 808–817 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Isotropic microstrain leisure in Ni-rich cathodes for lengthy biking lithium ion batteries. ACS Nano 17, 17095–17104 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Liu, T., Wu, T. & Lu, J. Pressure-retardant coherent perovskite part stabilized Ni-rich cathode. Nature 611, 61–67 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, Y. Okay. et al. Excessive-energy cathode materials for long-life and protected lithium batteries. Nat. Mater. 8, 320–324 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, Y. Okay. et al. Nanostructured high-energy cathode supplies for superior lithium batteries. Nat. Mater. 11, 942–947 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G.-L. et al. Constructing ultraconformal protecting layers on each secondary and first particles of layered lithium transition steel oxide cathodes. Nat. Power 4, 484–494 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yan, P. et al. Tailoring grain boundary constructions and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Power 3, 600–605 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, R. et al. Compositionally advanced doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, H. H. et al. Transition metal-doped Ni-rich layered cathode supplies for sturdy Li-ion batteries. Nat. Commun. 12, 6552 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. Approaching the capability restrict of lithium cobalt oxide in lithium ion batteries by way of lanthanum and aluminium doping. Nat. Power 3, 936–943 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. Y. et al. Revisiting main particles in layered lithium transition steel oxides and their influence on structural degradation. Adv. Sci. 6, 1800843 (2019).

    Article 

    Google Scholar
     

  • Ahmed, S. et al. Understanding the formation of antiphase boundaries in layered oxide cathode supplies and their evolution upon electrochemical biking. Matter 4, 3953–3966 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Z. et al. Charging reactions promoted by geometrically vital dislocations in battery supplies revealed by in situ single-particle synchrotron measurements. Adv. Mater. 32, e2003417 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Dynamics of particle community in composite battery cathodes. Science 376, 517–521 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. & Bai, J. Synthesis and processing by design of excessive‐nickel cathode supplies. Batter. Supercaps 5, e202100174 (2021).

    Article 

    Google Scholar
     

  • Ma, T. et al. Strong state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ excessive power X-ray diffraction and X-ray absorption close to edge spectroscopy. J. Energy Sources 341, 114–121 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hua, Y. et al. Unraveling the correlation between the synthesis time and electrochemical efficiency of transition steel layered oxides by in situ neutron powder diffraction. ACS Appl. Power Mater. 6, 6563–6571 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bianchini, M. et al. The interaction between thermodynamics and kinetics within the solid-state synthesis of layered oxides. Nat. Mater. 19, 1088–1095 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Artificial management of kinetic response pathway and cationic ordering in high-Ni layered oxide cathodes. Adv. Mater. 29, 1606715 (2017).

    Article 

    Google Scholar
     

  • Zhao, J. et al. In situ probing and artificial management of cationic ordering in Ni‐wealthy layered oxide cathodes. Adv. Power Mater. 7, 1601266 (2016).

    Article 

    Google Scholar
     

  • Track, S. H. et al. Towards a nanoscale‐defect‐free Ni‐wealthy layered oxide cathode by way of regulated pore evolution for lengthy‐lifespan Li rechargeable batteries. Adv. Funct. Mater. 34, 2306654 (2023).

    Article 

    Google Scholar
     

  • Zhang, M. J. et al. Cooling induced floor reconstruction throughout synthesis of excessive‐Ni layered oxides. Adv. Power Mater. 9, 1901915 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zuo, W. & Yang, Y. Synthesis, construction, electrochemical mechanisms, and atmospheric stability of Mn-based layered oxide cathodes for sodium ion batteries. Acc. Mater. Res. 3, 709–720 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gim, J. et al. Probing solid-state response by way of microstrain: a case examine on synthesis of LiCoO2. J. Energy Sources 469, 228422 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Park, H. et al. In situ multiscale probing of the synthesis of a Ni-rich layered oxide cathode reveals response heterogeneity pushed by competing kinetic pathways. Nat. Chem. 14, 614–622 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Search engine optimization, J. H. et al. Actual-time statement of part transition from layered to spinel part below electron beam irradiation. J. Anal. Sci. Technol. 14, 31 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bai, J. et al. Kinetic pathways templated by low-temperature intermediates throughout solid-state synthesis of layered oxides. Chem. Mater. 32, 9906–9913 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a contemporary open-source all goal crystallography software program package deal. J. Appl. Cryst. 46, 544–549 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, J. Y. et al. Radially aligned hierarchical columnar construction as a cathode materials for top power density sodium-ion batteries. Nat. Commun. 6, 6865 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Track, J. et al. Controlling floor part transition and chemical reactivity of O3-layered steel oxide cathodes for high-performance Na-ion batteries. ACS Power Lett. 5, 1718–1725 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. H. et al. RT-XAMF and TR-XRD research of solid-state synthesis and thermal stability of NaNiO2 as cathode materials for sodium-ion batteries. Ceram. Int. 48, 19675–19680 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Riesgo-González, V. et al. Impact of annealing on the construction, composition, and electrochemistry of NMC811 coated with Al2O3 utilizing an alkoxide precursor. Chem. Mater. 34, 9722–9735 (2022).

    Article 

    Google Scholar
     

  • Yoon, M. et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Power 6, 362–371 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Radin, M. D. et al. Narrowing the hole between theoretical and sensible capacities in Li‐ion layered oxide cathode supplies. Adv. Power Mater. 7, 1602888 (2017).

    Article 

    Google Scholar
     

  • Xiao, X., Xu, Z., Lin, F. & Lee, W. Okay. TXM-Sandbox: an open-source software program for transmission X-ray microscopy knowledge evaluation. J. Synchrotron Radiat. 29, 266–275 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, P. et al. Injection of oxygen vacancies within the bulk lattice of layered cathodes. Nat. Nanotechnol. 14, 602–608 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Power 7, 718–725 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xue, W. et al. Extremely-high-voltage Ni-rich layered cathodes in sensible Li steel batteries enabled by a sulfonamide-based electrolyte. Nat. Power 6, 495–505 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Noh, H.-J., Youn, S., Yoon, C. S. & Solar, Y.-Okay. Comparability of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode materials for lithium-ion batteries. J. Energy Sources 233, 121–130 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. In situ statement of thermal-driven degradation and security issues of lithiated graphite anode. Nat. Commun. 12, 4235 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Momma, Okay. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology knowledge. J. Appl. Cryst. 44, 1272–1276 (2011).

    Article 
    CAS 

    Google Scholar
     

  • van Berkum, J. G. M., Delhez, R., de Keijser, T. H. & Mittemeijer, E. J. Diffraction-line broadening because of pressure fields in supplies; elementary points and strategies of research. Acta Crystallogr. A 52, 730–747 (1996).

    Article 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *