A primordial DNA retailer and compute engine

  • Ceze, L., Nivala, J. & Strauss, Okay. Molecular digital information storage utilizing DNA. Nat. Rev. Genet. 20, 456–466 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Copeland, B. J. in The Stanford Encyclopedia of Philosophy Winter 2020 edn (ed. Zalta, E. N.) (Stanford Univ., 2020).

  • Ceruzzi, P. E. A historical past of contemporary computing. Selection Rev. On-line 36, 36-4531–36-4531 (1999).


    Google Scholar
     

  • Goldman, N. et al. In direction of sensible, high-capacity, low-maintenance data storage in synthesized DNA. Nature 494, 77–80 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Church, G. M., Gao, Y. & Kosuri, S. Subsequent-generation digital data storage in DNA. Science 337, 1628 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grass, R. N., Heckel, R., Puddu, M., Paunescu, D. & Stark, W. J. Sturdy chemical preservation of digital data on DNA in silica with error-correcting codes. Angew. Chem. Int. Ed. 54, 2552–2555 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Blawat, M. et al. Ahead error correction for DNA information storage. Procedia Comput. Sci. 80, 1011–1022.

  • Erlich, Y. & Zielinski, D. DNA Fountain permits a strong and environment friendly storage structure. Science 355, 950–954 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H. H., Kalhor, R., Goela, N., Bolot, J. & Church, G. M. Terminator-free template-independent enzymatic DNA synthesis for digital data storage. Nat. Commun. 10, 2383 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palluk, S. et al. De novo DNA synthesis utilizing polymerase-nucleotide conjugates. Nat. Biotechnol. 36, 645–650 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez, R. et al. DNA meeting for nanopore information storage readout. Nat. Commun. 10, 2933 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, C., LaBean, T. H., Reif, J. H. & Seeman, N. C. Logical computation utilizing algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adleman, L. M. Molecular computation of options to combinatorial issues. Science 266, 1021–1024 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Organick, L. et al. Random entry in large-scale DNA information storage. Nat. Biotechnol. 36, 242–248 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tabatabaei Yazdi, S. M. H., Yuan, Y., Ma, J., Zhao, H. & Milenkovic, O. A rewritable, random-access DNA-based storage system. Sci. Rep. 5, 1–10 (2015).

    Article 

    Google Scholar
     

  • Yazdi, S. M. H. T., Gabrys, R. & Milenkovic, O. Moveable and error-free DNA-based information storage. Sci. Rep. https://doi.org/10.1038/s41598-017-05188-1 (2017).

  • Bornholt, J. et al. A DNA-based archival storage system. In Proc. twenty first Worldwide Convention on Architectural Help for Programming Languages and Working Techniques—ASPLOS ’16 (eds Conte, T. & Zhou, Y.) 637–649 (ACM Press, 2016).

  • Bögels, B. W. A. et al. DNA storage in thermoresponsive microcapsules for repeated random multiplexed information entry. Nat. Nanotechnol. 18, 912–921 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benenson, Y. et al. Programmable and autonomous computing machine product of biomolecules. Nature 414, 430–434 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bell, N. A. W. & Keyser, U. F. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nat. Nanotechnol. 11, 645–651 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dickinson, G. D. et al. An alternate strategy to nucleic acid reminiscence. Nat. Commun. 12, 2371 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Okay. et al. Digital information storage utilizing DNA nanostructures and solid-state nanopores. Nano Lett. 19, 1210–1215 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Okay., Zhu, J., Bošković, F. & Keyser, U. F. Nanopore-based DNA arduous drives for rewritable and safe information storage. Nano Lett. 20, 3754–3760 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. DNA origami cryptography for safe communication. Nat. Commun. 10, 5469 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Numajiri, Okay., Kimura, M., Kuzuya, A. & Komiyama, M. Stepwise and reversible nanopatterning of proteins on a DNA origami scaffold. Chem. Commun. 46, 5127 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Roh, S., Williams, A. H., Bang, R. S., Stoyanov, S. D. & Velev, O. D. Gentle dendritic microparticles with uncommon adhesion and structuring properties. Nat. Mater. 18, 1315–1320 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, A. H. et al. Printable homocomposite hydrogels with synergistically bolstered molecular-colloidal networks. Nat. Commun. 12, 2834 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergenstråhle, M., Wohlert, J., Himmel, M. E. & Brady, J. W. Simulation research of the insolubility of cellulose. Carbohydr. Res. 345, 2060–2066 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Lindman, B., Medronho, B., Alves, L., Norgren, M. & Nordenskiöld, L. Hydrophobic interactions management the self-assembly of DNA and cellulose. Q. Rev. Biophys. 54, e3 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bang, R. S., Roh, S., Williams, A. H., Stoyanov, S. D. & Velev, O. D. Fluid stream templating of polymeric mushy matter with numerous morphologies. Adv. Mater. 35, 2211438 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ali, M. E. et al. in Reference Module in Supplies Science and Supplies Engineering (Elsevier, 2016); https://doi.org/10.1016/B978-0-12-803581-8.04075-3

  • Paul, A. & Bhattacharya, S. Chemistry and biology of DNA-binding small molecules. Curr. Sci. 102, 212–231 (2012).

    CAS 

    Google Scholar
     

  • Koch, J. et al. A DNA-of-things storage structure to create supplies with embedded reminiscence. Nat. Biotechnol. 38, 39–43 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Okay. N., Grandhi, T. S. P., Goklany, S. & Rege, Okay. Chemotherapeutic drug‐conjugated microbeads exhibit preferential binding to methylated plasmid DNA. Biotechnol. J. 13, 1700701 (2018).

    Article 

    Google Scholar
     

  • Stetefeld, J., McKenna, S. A. & Patel, T. R. Dynamic mild scattering: a sensible information and purposes in biomedical sciences. Biophys. Rev. 8, 409–427 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Okay. N., Volkel, Okay., Tuck, J. M. & Keung, A. J. Dynamic and scalable DNA-based data storage. Nat. Commun. 11, 2981 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher, S. et al. A scalable, absolutely automated course of for development of sequence-ready human exome focused seize libraries. Genome Biol. 12, R1 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeAngelis, M. M., Wang, D. G. & Hawkins, T. L. Strong-phase reversible immobilization for the isolation of PCR merchandise. Nucleic Acids Res. 23, 4742–4743 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y.-J. et al. Quantifying molecular bias in DNA information storage. Nat. Commun. 11, 3264 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matange, Okay., Tuck, J. M. & Keung, A. J. DNA stability: a central design consideration for DNA information storage methods. Nat. Commun. 12, 1358 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lauková, L., Konečná, B., Janovičová, Ľ., Vlková, B. & Celec, P. Deoxyribonucleases and their purposes in biomedicine. Biomolecules 10, 1036 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, P. Okay. Enzymes: rules and biotechnological purposes. Essays Biochem 59, 1–41 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., Wilson, G. G. & Murray, N. E. Highlights of the DNA cutters: a brief historical past of the restriction enzymes. Nucleic Acids Res. 42, 3–19 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allemand, J. F., Bensimon, D., Jullien, L., Bensimon, A. & Croquette, V. pH-dependent particular binding and brushing of DNA. Biophys. J. 73, 2064–2070 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandeventer, P. E. et al. Multiphasic DNA adsorption to silica surfaces beneath various buffer, pH, and ionic energy situations. J. Phys. Chem. B 116, 5661–5670 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, J. & Zhang, L. Fast dissolution of cellulose in LiOH/urea and NaOH/urea aqueous options. Macromol. Biosci. 5, 539–548 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiménez-Ángeles, F. & Firoozabadi, A. Hydrophobic hydration and the impact of NaCl salt within the adsorption of hydrocarbons and surfactants on clathrate hydrates. ACS Cent. Sci. 4, 820–831 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Strategies 16, 1297–1305 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soneson, C. et al. A complete examination of nanopore native RNA sequencing for characterization of advanced transcriptomes. Nat. Commun. 10, 3359 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, M. A. et al. Molecular barcoding of native RNAs utilizing nanopore sequencing and deep studying. Genome Res. 30, 1345–1353 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, M. et al. RNA nanotechnology for laptop design and in vivo computation. Philos. Trans. R Soc. A 371, 20120310 (2013).

    Article 

    Google Scholar
     

  • Faulhammer, D., Cukras, A. R., Lipton, R. J. & Landweber, L. F. Molecular computation: RNA options to chess issues. Proc. Natl Acad. Sci. USA 97, 1385–1389 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi, C. N., Nguyen, B. H., Strauss, Okay. & Ceze, L. Demonstration of end-to-end automation of DNA information storage. Sci. Rep. 9, 4998 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman, S. et al. Excessive density DNA information storage library through dehydration with digital microfluidic retrieval. Nat. Commun. 10, 1706 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, Y. et al. Built-in microfluidic DNA storage platform with automated pattern dealing with and bodily information partitioning. Anal. Chem. 94, 13153–13162 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerasimova, Y. V. & Kolpashchikov, D. M. In direction of a DNA nanoprocessor: reusable tile‐built-in DNA circuits. Angew. Chem. 128, 10400–10403 (2016).

    Article 

    Google Scholar
     

  • Guz, N. et al. Bioelectronic interface connecting reversible logic gates based mostly on enzyme and DNA reactions. ChemPhysChem 17, 2247–2255 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polak, R. E. & Keung, A. J. A molecular evaluation of the sensible potential of DNA-based computation. Curr. Opin. Biotechnol. 81, 102940 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, S. et al. DNA as a common chemical substrate for computing and information storage. Nat. Rev. Chem. 8, 179–194 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Cherry, Okay. M. & Qian, L. Scaling up molecular sample recognition with DNA-based winner-take-all neural networks. Nature 559, 370–376 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keung Lab. keung-lab/Lin-et-al-2024: v1.0.1. Zenodo https://doi.org/10.5281/zenodo.12169723 (2024).

  • Lin, Okay. & Keung, A. FASTQ information for: a primordial DNA retailer and compute engine. Zenodo https://doi.org/10.5281/zenodo.12192541 (2024).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *