Past hype: unveiling the Actual challenges in medical translation of 3D printed bone scaffolds and the recent prospects of bioprinted organoids | Journal of Nanobiotechnology

  • Lu J, Wang Q-Y, Sheng J-G, Guo S-C, Tao S-CJBMD. A 3D-printed, customized, biomechanics-specific beta-tricalcium phosphate bioceramic rod system: customized therapy technique for sufferers with femoral shaft non-union based mostly on finite ingredient evaluation[J]. BMC Musculoskelet Disord. 2020;21(1):1–9.


    Google Scholar
     

  • Park J, Kaliannagounder VK, Jang SR, Yoon D, Rezk AI, Bhattarai DP, Kim CS. Electroconductive Polythiophene Nanocomposite Fibrous scaffolds for enhanced osteogenic differentiation through Electrical Stimulation[J]. ACS Biomater Sci Eng. 2022;8(5):1975–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Sculco PK, Wright T, Malahias M-A, Gu A, Bostrom M, Haddad F et al. The prognosis and therapy of acetabular bone loss in revision hip arthroplasty: a global consensus symposium[J]. HSS Journal®, 2022, 18(1):8–41

  • A TDN, A AK, A GI AKTQN. Additive manufacturing (3D printing): a evaluation of supplies, strategies, functions and challenges[J]. Compos Half B: Eng. 2018;143:172–96.


    Google Scholar
     

  • Toh EMS, Thenpandiyan AA, Foo ASC, Zhang JJY, Lim MJR, Goh CP et al. Medical outcomes of 3D-Printed bioresorbable scaffolds for bone tissue Engineering-A Pilot Research on 126 sufferers for Burrhole covers in subdural Hematoma[J]. Biomedicines, 2022, 10(11).

  • Ashammakhi N, GhavamiNejad A, Tutar R, Fricker A, Roy I, Chatzistavrou X, et al. Highlights on advancing frontiers in tissue engineering[J]. Tissue Eng Half B: Evaluations. 2022;28(3):633–64.


    Google Scholar
     

  • Li Z, Wang Q, Liu G. A evaluation of 3D printed bone Implants[J]. Micromachines (Basel), 2022, 13(4).

  • Bandyopadhyay A, Mitra I, Bose S. 3D Printing for Bone Regeneration[J]. Curr Osteoporos Rep. 2020;18(5):505–14.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu Z, Fu J, Lin H, He YJAJPS. Improvement of 3D bioprinting: from printing strategies to biomedical functions[J]. Asian J Pharm Sci. 2020;15(5):529–57.

    PubMed 

    Google Scholar
     

  • Rossi G, Manfrin A, Lutolf MPJNRG. Progress and potential in organoid analysis[J]. Nat Rev Genet. 2018;19(11):671–87.

    CAS 
    PubMed 

    Google Scholar
     

  • Obeid DA, Mir TA, Alzhrani A, Altuhami A, Shamma T, Ahmed S, et al. Utilizing Liver organoids as fashions to check the pathobiology of Uncommon Liver Illnesses[J]. Biomedicines. 2024;12(2):446.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Chen X, Geng Z, Su J. The horizon of bone organoid: a perspective on development and software[J]. Bioactive Mater. 2022;18:15–25.

    CAS 

    Google Scholar
     

  • Teitelbaum SL. Bone resorption by osteoclasts[J]. Science. 2000;289(5484):1504–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Dominici M, Le Blanc Ok, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal standards for outlining multipotent mesenchymal stromal cells. The Worldwide Society for Mobile Remedy place assertion[J]. Cytotherapy. 2006;8(4):315–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Chan CK, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, et al. Identification of the human skeletal stem cell[J]. Cell. 2018;175(1):43–56. e21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Huang W, Zhou Y, He L, He Z, Chen Z, et al. 3D printing of bone tissue engineering scaffolds[J]. Bioact Mater. 2020;5(1):82–91.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia Z, Xu X, Zhu D, Zheng Y. Design, printing, and engineering of regenerative biomaterials for customized bone healthcare[J]. Prog Mater Sci, 2023, 134.

  • Wei S, Ma JX, Xu L, Gu XS, Ma XL. Biodegradable supplies for bone defect restore[J]. Mil Med Res. 2020;7(1):54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Liu W, Schnitzler V, Tancret F, Bouler J-MJA. Calcium phosphate cements for bone substitution: Chemistry, dealing with and mechanical properties[J]. Acta Biomater. 2014;10(3):1035–49.

    PubMed 

    Google Scholar
     

  • Tabia Z, Meriame B, Mabrouk KE, Vaudreuil SJJMS. Manufacturing of a metallic 3D framework coated with a bioglass matrix for implant functions[J]. J Mater Sci, 2021, 56(2).

  • Khoramgah MS, Ranjbari J, Abbaszadeh HA, Sadat F, Ghanbarian HJB. Freeze-dried multiscale porous nanofibrous three dimensional scaffolds for bone regenerations[J]. BioImpacts: BI. 2020;10(2):73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borowiec J, Hampl J, Singh S, Haefner S, Friedel Ok, Mai P, et al. 3D microcontact printing for mixed chemical and topographical patterning on porous cell tradition membrane[J]. ACS Appl Mater Interfaces. 2018;10(26):22857–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering[J]. Bioact Mater. 2018;3(3):278–314.

    PubMed 

    Google Scholar
     

  • Mountziaris PM, Mikos AGJTEPBR. Modulation of the inflammatory response for enhanced bone tissue regeneration[J]. Tissue Eng Half B: Evaluations. 2008;14(2):179–86.

    CAS 

    Google Scholar
     

  • Karunakaran R, Ortgies S, Tamayol A, Bobaru F, Sealy MPJB. Additive manufacturing of magnesium alloys[J]. Bioactive Mater. 2020;5(1):44–54.


    Google Scholar
     

  • B WL AYL. A JZ, a AAZJAB. Corrosion fatigue conduct of additively manufactured biodegradable porous zinc[J]. Acta Biomater. 2020;106:439–49.


    Google Scholar
     

  • Feng P, Zhao R, Tang W, Yang F, Tian H, Peng S, Pan H, Shuai C. Structural and purposeful adaptive Synthetic bone: supplies, fabrications, and Properties[J]. Adv Funct Mater, 2023, 33(23).

  • Huan Y, Zhou D, Wu X, He X, Chen H, Li S, et al. 3D bioprinted autologous bone particle scaffolds for cranioplasty promote bone regeneration with each implanted and native BMSCs[J]. Biofabrication. 2023;15(2):025016.


    Google Scholar
     

  • Oladapo BI, Zahedi SA, Ismail SO, Omigbodun FT, Bowoto OK, Olawumi MA, Muhammad MAJB-D. Manufacturing. 3D printing of PEEK–cHAp scaffold for medical bone implant[J]. Bio-Design Manuf. 2021;4:44–59.

    CAS 

    Google Scholar
     

  • Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. 4-dimensional bioprinting: present developments and functions in bone tissue engineering[J]. Acta Biomater. 2020;101:26–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Owen R. Reilly GCJFib, biotechnology. In vitro fashions of bone remodelling and related issues[J]. Entrance Bioeng Biotechnol. 2018;6:134.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herber V, Labmayr V, Sommer NG, Marek R, Wittig U, Leithner A, Seibert F, Holweg PJI. Can {hardware} elimination be prevented utilizing bioresorbable Mg-Zn-Ca screws after medial malleolar fracture fixation? Mid-term outcomes of a first-in-human research[J]. Harm. 2022;53(3):1283–8.

    PubMed 

    Google Scholar
     

  • Eger M, Sterer N, Liron T, Kohavi D, Gabet Y. Scaling of titanium implants entrains inflammation-induced osteolysis[J]. Sci Rep. 2017;7:39612.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han HS, Sergio L, Indong J, James E, Yu-Chan Ok, Hyun-Kwang S, Frank W, Diego M, Sion GJJMT. Present standing and outlook on the medical translation of biodegradable metals[J]. Mater At present, 2018:S136970211830347X-.

  • Zhang J, Shang Z, Jiang Y, Zhang Ok, Li X, Ma M, Li Y, Ma B. Biodegradable metals for bone fracture restore in animal fashions: a scientific evaluation[J]. Regen Biomater. 2021;8(1):rbaa047.

    PubMed 

    Google Scholar
     

  • Gu X, Zheng Y, Cheng Y, Zhong S, Xi TJB. In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials. 2009;30(4):484–98.

    CAS 
    PubMed 

    Google Scholar
     

  • Yy A, Ch A, De A, Wy A, Fq A, Dx B, et al. Mg bone implant: options, developments and views[J]. Mater Design. 2020;185:108259.


    Google Scholar
     

  • Cheng M-q, Wahafu T, Jiang G-f, Liu W, Qiao Y-q et al. Peng X-c,. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration[J]. Scientific studies, 2016, 6(1):1–14

  • Dong J, Tumer N, Putra NE, Zhu J, Li Y, Leeflang MA, et al. Extrusion-based 3D printed magnesium scaffolds with multifunctional MgF(2) and MgF(2)-CaP coatings[J]. Biomater Sci. 2021;9(21):7159–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Windhagen H, Radtke Ok, Weizbauer A, Diekmann J, Noll Y, Kreimeyer U, Schavan R, Stukenborg-Colsman C. Waizy HJBeo. Biodegradable magnesium-based screw clinically equal to titanium screw in hallux valgus surgical procedure: brief time period outcomes of the primary potential, randomized, managed medical pilot research[J]. Biomed Eng On-line. 2013;12:1–10.


    Google Scholar
     

  • Tsakiris V, Tardei C. Clicinschi FMJJoM, Alloys. Biodegradable mg alloys for orthopedic implants–A evaluation[J]. J Magnesium Alloys. 2021;9(6):1884–905.

    CAS 

    Google Scholar
     

  • Avedesian MM, Baker H. ASM specialty handbook: magnesium and magnesium alloys. Quantity 274. ASM worldwide Supplies Park, OH; 1999.

  • Agarwal S, Curtin J, Duffy B, Jaiswal SJMS. Biodegradable magnesium alloys for orthopaedic functions: a evaluation on corrosion, biocompatibility and floor modifications[J]. Mater Sci Engineering: C. 2016;68:948–63.

    CAS 

    Google Scholar
     

  • Ibrahim H, Billings C, Abdalla M, Korra A, Anderson DE. Vivo Evaluation of Excessive-Power and Corrosion-Managed Magnesium-based bone Implants[J]. Bioengineering. 2023;10(7):877.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopp A, Fischer H, Soares AP, Schmidt-Bleek Ok, Leber C, Kreiker H, et al. Lengthy-term in vivo observations present biocompatibility and efficiency of ZX00 magnesium screws surface-modified by plasma-electrolytic oxidation in Göttingen miniature pigs[J]. Acta Biomater. 2023;157:720–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Niranjan C, Raghavendra T, Rao MP, Siddaraju C, Gupta M, Jain VKS, Aishwarya R. Magnesium alloys as extraordinarily promising alternate options for momentary orthopedic implants–A evaluation[J]. J Magnesium Alloys, 2023.

  • Liu Y, Zheng Y, Chen XH, Yang JA, Pan H, Chen D, et al. Basic idea of biodegradable metals—definition, standards, and design[J]. Adv Funct Mater. 2019;29(18):1805402.


    Google Scholar
     

  • Zafar MJ, Zhu D, Zhang Z. 3D Printing of Bioceramics for Bone tissue Engineering[J]. Mater (Basel), 2019, 12(20).

  • Chemistry VG-CJPSS. Calcium phosphates as substitution of bone tissues[J]. Prog Strong State Chem. 2004;32(1–2):1–31.


    Google Scholar
     

  • Brandt J, Henning S, Michler G, Hein W, Bernstein A, Schulz MJJMSMM. Nanocrystalline hydroxyapatite for bone restore: an animal research[J]. J Mater Science: Mater Med. 2010;21:283–94.

    CAS 

    Google Scholar
     

  • Ribas RG, Schatkoski VM, do Amaral Montanheiro TL, de Menezes BRC, Stegemann C, Leite DMG, Thim GPJCI. Present advances in bone tissue engineering regarding ceramic and bioglass scaffolds: a evaluation[J]. Ceram Int. 2019;45(17):21051–61.

    CAS 

    Google Scholar
     

  • Zheng SY, Liu ZW, Kang HL, Liu F, Yan GP, Li F. 3D-Printed scaffolds based mostly on poly(trimethylene carbonate), poly(epsilon-Caprolactone), and beta-tricalcium phosphate[J]. Int J Bioprint. 2023;9(1):641.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Rahaman MN, Hilmas GE, Bal BSJA. Mechanical properties of bioactive glass (13–93) scaffolds fabricated by robotic deposition for structural bone restore[J]. Acta Biomater. 2013;9(6):7025–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Nandi SK, Fielding G, Banerjee D, Bandyopadhyay A. Bose SJJomr. 3D-printed β-TCP bone tissue engineering scaffolds: results of chemistry on in vivo organic properties in a rabbit tibia mannequin[J]. J Mater Res. 2018;33(14):1939–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thygesen T, Slots C, Jensen MB, Ditzel N, Kassem M, Langhorn L, Andersen MJB. Comparability of off-the-shelf β-tricalcium phosphate implants with novel resorbable 3D printed implants in mandible ramus of pigs[J]. Bone. 2022;159:116370.

    CAS 
    PubMed 

    Google Scholar
     

  • Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JMJM. Bioactive glasses and glass-ceramics for healthcare functions in bone regeneration and tissue engineering[J]. Supplies. 2018;11(12):2530.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hench LL, Wilson JJS. Floor-active biomaterials[J]. Science. 1984;226(4675):630–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Jones JRJA. Reprint of: evaluation of bioactive glass: from Hench to hybrids[J]. Acta Biomater. 2015;23:S53–82.

    PubMed 

    Google Scholar
     

  • Jones JR, Brauer DS, Hupa L, Greenspan DCJIJAGS. Bioglass and bioactive glasses and their influence on healthcare[J]. Int J Appl Glass Sci. 2016;7(4):423–34.

    CAS 

    Google Scholar
     

  • van der Heide D, Cidonio G, Stoddart MJ, D’Este M. 3D printing of inorganic-biopolymer composites for bone regeneration[J]. Biofabrication, 2022, 14(4).

  • Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KKJP. A comparative evaluation of pure and artificial biopolymer composite scaffolds[J]. Polymers. 2021;13(7):1105.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin WJP. An outline on collagen and gelatin-based cryogels: fabrication, classification, properties and Biomedical Purposes[J]. Polymers, 2021, 13.

  • Osidak EO, Karalkin PA, Osidak MS, Parfenov VA, Sivogrivov DE, Pereira F, et al. Viscoll collagen resolution as a novel bioink for direct 3D bioprinting[J]. J Mater Sci Mater Med. 2019;30(3):31.

    PubMed 

    Google Scholar
     

  • Wang Z, Yang Y, Gao Y, Xu Z, Yang S, Jin M. Establishing a novel 3D printing bioinks system with recombinant human collagen[J]. Int J Biol Macromol. 2022;211:400–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhai P, Peng X, Li B, Liu Y, Solar H, Li XJI. The applying of hyaluronic acid in bone regeneration[J]. Int J Biol Macromol. 2020;151:1224–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Villen F, Guembe A, José MR, Zúñiga T, Ruiz-Alonso S, Saenz-del-Burgo L, Jesús MI, José IR, Pedraz JLJIJoB. Characterization and evaluation of recent fibrillar collagen inks and bioinks for 3D printing and bioprinting[J]. Int J Bioprinting, 2023, 9(3).

  • Okamoto M, John BJPPS. Artificial biopolymer nanocomposites for tissue engineering scaffolds[J]. Prog Polym Sci. 2013;38(10–11):1487–503.

    CAS 

    Google Scholar
     

  • Mondrinos MJ, Dembzynski R, Lu L, Byrapogu VK, Wootton DM, Lelkes PI, Zhou J. Porogen-based stable freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering[J]. Biomaterials. 2006;27(25):4399–408.

    CAS 
    PubMed 

    Google Scholar
     

  • Tan L, Yu X, Wan P, Yang KJJoMS. Expertise. Biodegradable supplies for bone repairs: a evaluation[J]. J Mater Sci Technol. 2013;29(6):503–13.

    CAS 

    Google Scholar
     

  • Albertsson A-C, Varma IKJB. Current developments in ring opening polymerization of lactones for biomedical functions[J]. Biomacromolecules. 2003;4(6):1466–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee SJ, Khang G, Lee YM, Lee HBJJBSPE. Interplay of human chondrocytes and NIH/3T3 fibroblasts on chloric acid-treated biodegradable polymer surfaces[J]. J Biomater Sci Polym Ed. 2002;13(2):197–212.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu T, Li Z, Zhao L, Chen Z, Lin Z, Li B, et al. Personalized design 3D printed PLGA/Calcium sulfate Scaffold enhances mechanical and Organic properties for Bone Regeneration[J]. Entrance Bioeng Biotechnol. 2022;10:874931.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan L, Teng W, He J, Wang D, Liu C, Zhao Y, Zhang L. [Retracted] worth of 3D printed PLGA scaffolds for cartilage defects when it comes to Restore[J]. Proof-Primarily based Complement Altern Med. 2022;2022(1):3561430.


    Google Scholar
     

  • Liu Z, Tian G, Liu L, Li Y, Xu S, Du Y, et al. A 3D-printed PLGA/HA composite scaffold modified with fusion peptides to boost its antibacterial, osteogenic and angiogenic properties in bone defect restore[J]. J Mater Res Technol. 2024;30:5804–19.

    CAS 

    Google Scholar
     

  • lin Liang Z, Chen L, quan Wu Y. 3D printed PLGA scaffold with nano-hydroxyapatite carrying linezolid for therapy of contaminated bone defects[J]. Biomed Pharmacother. 2024;172:116228.


    Google Scholar
     

  • Chereddy KK, Vandermeulen G, Préat V. PLGA based mostly drug supply methods: promising carriers for wound therapeutic exercise[J]. Wound Restore Regeneration. 2016;24(2):223–36.

    PubMed 

    Google Scholar
     

  • Alghareeb S, Asare-Addo Ok, Conway BR, Adebisi AO. PLGA nanoparticles for nasal drug supply[J]. J Drug Deliv Sci Technol, 2024:105564.

  • Xu S, Tian G, Zhi M, Liu Z, Du Y, Lu X, et al. Functionalized PLGA Microsphere loaded with Fusion peptide for remedy of bone Defects[J]. ACS Biomaterials Sci Eng. 2024;10(4):2463–76.

    CAS 

    Google Scholar
     

  • Li Z, Huang W, Zhang M, Huo Y, Li F, Track L, et al. Minocycline-loaded nHAP/PLGA microspheres for prevention of injury-related corneal angiogenesis[J]. J Nanobiotechnol. 2024;22(1):134.

    CAS 

    Google Scholar
     

  • Li G, Zhao M, Xu F, Yang B, Li X, Meng X, Teng L, Solar F, Li Y. Synthesis and organic software of polylactic acid[J]. Molecules. 2020;25(21):5023.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramot Y, Haim-Zada M, Domb AJ, Nyska A. Biocompatibility and security of PLA and its copolymers[J]. Adv Drug Deliv Rev. 2016;107:153–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an summary of biomedical functions[J]. J Managed Launch. 2012;161(2):505–22.

    CAS 

    Google Scholar
     

  • Liu Ok, Li L, Chen J, Li Y, Wen W, Lu L, et al. Bone ECM-like 3D printing scaffold with liquid crystalline and viscoelastic microenvironment for bone regeneration[J]. ACS Nano. 2022;16(12):21020–35.

    CAS 
    PubMed 

    Google Scholar
     

  • Wei X, Zhou W, Tang Z, Wu H, Liu Y, Dong H, et al. Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by selling angiogenesis and osteogenesis[J]. Bioactive Mater. 2023;20:16–28.

    CAS 

    Google Scholar
     

  • Fitzpatrick V, Martín-Moldes Z, Deck A, Torres-Sanchez R, Valat A, Cairns D, Li C, Kaplan DLJB. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization[J]. 2021, 276:120995.

  • Lengthy J, Yao Z, Zhang W, Liu B, Chen Ok, Li L, et al. Regulation of Osteoimmune Microenvironment and Osteogenesis by 3D-Printed PLAG/black phosphorus scaffolds for bone Regeneration[J]. Adv Sci. 2023;10(28):2302539.

    CAS 

    Google Scholar
     

  • Askari M, Hutchins DA, Thomas PJ, Astolfi L, Watson RL, Abdi M, et al. Additive manufacturing of metamaterials: a evaluation[J]. Additive Manuf. 2020;36:101562.


    Google Scholar
     

  • Ng WL, An J, Chua CK. Course of, materials, and regulatory concerns for 3D printed medical gadgets and tissue constructs[J]. Engineering, 2024.

  • Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, et al. 3D printing of ceramics: a evaluation[J]. J Eur Ceram Soc. 2019;39(4):661–87.

    CAS 

    Google Scholar
     

  • Trombetta R, Inzana JA, Schwarz EM, Kates SL. Awad HAJAobe. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug supply[J]. Ann Biomed Eng. 2017;45:23–44.

    PubMed 

    Google Scholar
     

  • Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu XJB. Picture-curing 3D printing method and its challenges[J]. Bioactive Mater. 2020;5(1):110–5.


    Google Scholar
     

  • Awad A, Fina F, Goyanes A, Gaisford S, Basit AWJADDR. Advances in powder mattress fusion 3D printing in drug supply and healthcare[J]. Adv Drug Deliv Rev. 2021;174:406–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Wang Q, Liu GJM. A evaluation of 3D printed bone implants[J]. Micromachines. 2022;13(4):528.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attarilar S, Ebrahimi M, Djavanroodi F, Fu Y, Wang L, Yang J. 3D Printing applied sciences in metallic implants: a thematic evaluation on the methods and Procedures[J]. Int J Bioprint. 2021;7(1):306.

    PubMed 

    Google Scholar
     

  • Koons GL, Diba M, Mikos AG. Supplies design for bone-tissue engineering[J]. Nat Evaluations Mater. 2020;5(8):584–603.

    CAS 

    Google Scholar
     

  • Mirkhalaf M, Males Y, Wang R, No Y, Zreiqat H. Customized 3D printed bone scaffolds: a evaluation[J]. Acta Biomater. 2023;156:110–24.

    PubMed 

    Google Scholar
     

  • Wu Y, Su H, Li M, Xing H. Digital gentle processing-based multi‐materials bioprinting: processes, functions, and views[J]. J Biomedical Mater Res Half A. 2023;111(4):527–42.

    CAS 

    Google Scholar
     

  • Amini A, Guijt RM, Themelis T, De Vos J, Eeltink S. Current developments in digital gentle processing 3D-printing methods for microfluidic analytical gadgets[J]. J Chromatogr A. 2023;1692:463842.

    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang YSJI. Stereolithography equipment and digital gentle processing-based 3D bioprinting for tissue fabrication[J]. Iscience, 2023, 26(2).

  • Lam T, Dehne T, Krüger JP, Hondke S, Endres M, Thomas A, Lauster R, Sittinger M, Kloke LJJBMRPBAB. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage[J]. 2019, 107(8):2649–57.

  • Hong H, Search engine optimization YB, Lee JS, Lee YJ, Lee H, Ajiteru O, et al. Digital gentle processing 3D printed silk fibroin hydrogel for cartilage tissue engineering[J]. J Biomedical Mater Res Half B: Appl Biomaterials. 2020;232:119679.

    CAS 

    Google Scholar
     

  • Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay AJP. Additive manufacturing of biomaterials[J]. Prog Mater Sci. 2018;93:45–111.

    PubMed 

    Google Scholar
     

  • Grémare A, Guduric V, Bareille R, Heroguez V, Latour S, L’heureux N, Fricain JC, Le Catros S, Nihouannen DJJoBMRPA. Characterization of printed PLA scaffolds for bone tissue engineering[J]. J Biomedical Mater Res Half A. 2018;106(4):887–94.


    Google Scholar
     

  • Peng E, Zhang D, Ding JJAM. Ceramic robocasting: current achievements, potential, and future developments[J]. Adv Mater. 2018;30(47):1802404.


    Google Scholar
     

  • Yang DH, Park HN, Bae MS, Lee JB, Heo DN, Lee WJ, et al. Analysis of GENESIS-BCP™ scaffold composed of hydroxyapatite and β-tricalcium phosphate on bone formation[J]. Macromol Res. 2012;20:627–33.

    CAS 

    Google Scholar
     

  • Miramond T, Corre P, Borget P, Moreau F, Guicheux J, Daculsi G, Weiss PJJBA. Osteoinduction of biphasic calcium phosphate scaffolds in a nude mouse mannequin[J]. J Biomater Appl. 2014;29(4):595–604.

    CAS 
    PubMed 

    Google Scholar
     

  • Placone JK, Engler AJJA. Current advances in extrusion-based 3D printing for biomedical functions[J]. Adv Healthc Mater. 2018;7(8):1701161.


    Google Scholar
     

  • Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue H-J, Ramadan MH, Hudson AR. Feinberg AWJSa. Three-dimensional printing of advanced organic buildings by freeform reversible embedding of suspended hydrogels[J]. Sci Adv. 2015;1(9):e1500758.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attarilar S, Ebrahimi M, Djavanroodi F, Fu Y, Wang L, Yang J. 3D printing applied sciences in metallic implants: a thematic evaluation on the methods and procedures[J]. Int J Bioprinting, 2021, 7(1).

  • Elkaseer A, Chen KJ, Janhsen JC, Refle O, Hagenmeyer V, Scholz SG. Materials jetting for superior functions: a state-of-the-art evaluation, gaps and future instructions[J]. Additive Manuf. 2022;60:103270.

    CAS 

    Google Scholar
     

  • Zhou L, Miller J, Vezza J, Mayster M, Raffay M, Justice Q et al. Additive Manufacturing: A Complete Overview[J]. Sensors, 2024, 24(9):2668

  • Ahn J-H, Kim J, Han G, Kim D, Cheon Ok-H, Lee H, et al. 3D-printed biodegradable composite scaffolds with considerably enhanced mechanical properties through the mixture of binder jetting and capillary rise infiltration course of[J]. Additive Manuf. 2021;41:101988.

    CAS 

    Google Scholar
     

  • Lowther M, Louth S, Davey A, Hussain A, Ginestra P, Carter L, Eisenstein N, Grover L, Cox SJAM. Medical, industrial, and analysis views on powder mattress fusion additively manufactured metallic implants[J]. Additive Manuf. 2019;28:565–84.

    CAS 

    Google Scholar
     

  • Brunello G, Sivolella S, Meneghello R, Ferroni L, Gardin C, Piattelli A, Zavan B. Bressan EJBa. Powder-based 3D printing for bone tissue engineering[J]. Biotechnol Adv. 2016;34(5):740–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Duan B, Wang MJM. Selective laser sintering and its software in biomedical engineering[J]. MRS Bull. 2011;36(12):998–1005.

    CAS 

    Google Scholar
     

  • Sing SL, An J, Yeong WY, Wiria FEJJOR. Laser and electron-beam powder‐mattress additive manufacturing of metallic implants: a evaluation on processes, supplies and designs[J]. J Orthop Res. 2016;34(3):369–85.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Liu B, Min S, Yin B, Peng B, Yu Z, et al. Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder mattress fusion for orthopedic functions: course of optimization, in vitro and in vivo investigation[J]. Bioactive Mater. 2022;16:301–19.

    CAS 

    Google Scholar
     

  • Van der Stok J, Van der Jagt OP, Amin Yavari S, De Haas MF, Waarsing JH, Jahr H, et al. Selective laser melting-produced porous titanium scaffolds regenerate bone in essential measurement cortical bone defects[J]. J Orthop Res. 2013;31(5):792–9.

    PubMed 

    Google Scholar
     

  • Zhang J, Shang Z, Jiang Y, Zhang Ok, Li X, Ma M, Li Y, Ma B. Biodegradable metals for bone fracture restore in animal fashions: a scientific evaluation[J]. Regenerative Biomaterials. 2021;8(1):rbaa047.

    PubMed 

    Google Scholar
     

  • Li L-Y, Cui L-Y, Zeng R-C, Li S-Q, Chen X-B, Zheng Y, Kannan MB. Advances in functionalized polymer coatings on biodegradable magnesium alloys–A evaluation[J]. Acta Biomater. 2018;79:23–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Raees S, Ullah F, Javed F, Akil HM, Khan MJ, Safdar M, et al. Classification, processing, and functions of bioink and 3D bioprinting: an in depth evaluation[J]. Int J Biol Macromol. 2023;232:123476.

    CAS 
    PubMed 

    Google Scholar
     

  • Sabetkish S, Currie P, Meagher L. Current developments in 3D Bioprinting Expertise for skeletal muscle Regeneration[J]. Acta Biomater, 2024.

  • Ashammakhi N, Hasan A, Kaarela O, Byambaa B, Sheikhi A, Gaharwar AK, Khademhosseini A. Advancing frontiers in bone Bioprinting[J]. Adv Healthc Mater. 2019;8(7):e1801048.

    PubMed 

    Google Scholar
     

  • Gao G, Cui XJBL. Three-dimensional bioprinting in tissue engineering and regenerative medication[J]. Biotechnol Lett. 2016;38(2):203–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Freeman FE, Burdis R, Kelly DJ. Printing New bones: from print-and-Implant gadgets to Bioprinted Bone Organ Precursors[J]. Traits Mol Med. 2021;27(7):700–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala, AJNb. A 3D bioprinting system to provide human-scale tissue constructs with structural integrity[J]. Nat Biotechnol. 2016;34(3):312–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly. DJJAhm. 3D bioprinting of developmentally impressed templates for complete bone organ engineering[J]. Superior healthcare supplies, 2016, 5(18):2353–2362.

  • Di Bella C, Duchi S, O’Connell CD, Blanchard R, Augustine C, Yue Z, et al. In situ handheld three-dimensional bioprinting for cartilage regeneration[J]. J Tissue Eng Regen Med. 2018;12(3):611–21.

    PubMed 

    Google Scholar
     

  • Daly AC, Prendergast ME, Hughes AJ, Burdick JAJC. Bioprinting Biologist[J] Cell. 2021;184(1):18–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Hao Y, Cao B, Deng L, Li J, Ran Z, Wu J et al. The primary 3D-bioprinted customized lively bone to restore bone defects: a case report[J]. Int J Bioprinting, 2023, 9(2).

  • Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B. Shu WJBm. 3D bioactive composite scaffolds for bone tissue engineering[J]. Bioactive Mater. 2018;3(3):278–314.


    Google Scholar
     

  • Kang C-W, Fang F-ZJAM. Cutting-edge of bioimplants manufacturing: half I[J]. Adv Manuf. 2018;6:20–40.

    CAS 

    Google Scholar
     

  • Zhang J, Li S, He H, Han L, Zhang S, Yang L, et al. Medical pointers for indications, methods, and issues of autogenous bone grafting[J]. Chin Med J. 2024;137(01):5–7.

    PubMed 

    Google Scholar
     

  • Mladenovska T, Choong PF, Wallace GG, O’connell CD. The regulatory problem of 3D bioprinting[J]. Regen Med. 2023;18(8):659–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Zan J, Qian G, Deng F, Zhang J, Zeng Z, Peng S. Shuai CJJoMR, Expertise. Dilemma and breakthrough of biodegradable poly-l-lactic acid in bone tissue restore[J]. J Mater Res Technol. 2022;17:2369–87.

    CAS 

    Google Scholar
     

  • Li G, Yang H, Zheng Y, Chen X-H, Yang J-A, Zhu D, Ruan L. Takashima KJAb. Challenges in using zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility[J]. Acta Biomater. 2019;97:23–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Chen Z, Gao C, Liu J, Liu Ok, Wang X, et al. A mechanical-assisted post-bioprinting technique for difficult bone defects restore[J]. Nat Commun. 2024;15(1):3565.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levato R, Dudaryeva O, Garciamendez-Mijares CE, Kirkpatrick BE, Rizzo R, Schimelman J, et al. Mild-based vat-polymerization bioprinting[J]. Nat Evaluations Strategies Primers. 2023;3(1):47.

    CAS 

    Google Scholar
     

  • Ng WL, Lee JM, Zhou M, Chen Y-W, Lee Ok-XA, Yeong WY, Shen Y-F. Vat polymerization-based bioprinting—course of, supplies, functions and regulatory challenges[J]. Biofabrication. 2020;12(2):022001.

    CAS 
    PubMed 

    Google Scholar
     

  • Ng WL, Huang X, Shkolnikov V, Goh GL, Suntornnond R, Yeong WY. Controlling droplet influence velocity and droplet quantity: key elements to attaining excessive cell viability in sub-nanoliter droplet-based bioprinting[J]. Int J Bioprinting, 2022, 8(1).

  • Ng WL, Huang X, Shkolnikov V, Suntornnond R, Yeong WY. Polyvinylpyrrolidone-based bioink: affect of bioink properties on printing efficiency and cell proliferation throughout inkjet-based bioprinting[J]. Bio-Design Manuf. 2023;6(6):676–90.

    CAS 

    Google Scholar
     

  • Xu H-Q, Liu J-C, Zhang Z-Y, Xu C-X. A evaluation on cell injury, viability, and performance throughout 3D bioprinting[J]. Army Med Res. 2022;9(1):70.

    CAS 

    Google Scholar
     

  • Ataie Z, Kheirabadi S, Zhang JW, Kedzierski A, Petrosky C, Jiang R, Vollberg C, Sheikhi A. Nanoengineered granular hydrogel bioinks with preserved interconnected microporosity for extrusion bioprinting[J]. Small. 2022;18(37):2202390.

    CAS 

    Google Scholar
     

  • Boularaoui S, Al Hussein G, Khan KA, Christoforou N, Stefanini C. An outline of extrusion-based bioprinting with a deal with induced shear stress and its impact on cell viability[J]. Bioprinting. 2020;20:e00093.


    Google Scholar
     

  • Qin Y, Qi Q, Scott PJ, Jiang X. Standing, comparability, and way forward for the representations of additive manufacturing information[J]. Comput Aided Des. 2019;111:44–64.


    Google Scholar
     

  • Godec D, Pilipović A, Breški T. Common course of Workflow in Additive Manufacturing. A information to Additive Manufacturing. Springer Worldwide Publishing Cham; 2022. pp. 45–57.

  • Kumar A, Kumar P, Mittal RK, Singh H. Printing file codecs for additive manufacturing applied sciences[J]. Adv Additive Manuf, 2023:87–102.

  • Mahadik B, Margolis R, McLoughlin S, Melchiorri A, Lee SJ, Yoo J, Atala A, Mikos AG, Fisher JPJB. An open-source bioink database for microextrusion 3D printing[J]. Biofabrication. 2022;15(1):015008.


    Google Scholar
     

  • Ma S, Wang Z, Guo Y, Wang P, Yang Z, Han L, Solar J, Xia Y. Enhanced osteoinduction of electrospun scaffolds with assemblies of hematite nanoparticles as a bioactive interface[J]. Int J Nanomed, 2019:1051–68.

  • Ferraz MP. An outline on the massive gamers in bone tissue Engineering: Biomaterials, scaffolds and Cells[J]. Int J Mol Sci. 2024;25(7):3836.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takabatake Ok, Matsubara M, Yamachika E, Fujita Y, Arimura Y, Nakatsuji Ok, Nakano Ok, Nagatsuka H, Iida S. Evaluating the osteogenic potential and bone regeneration capacities of dedifferentiated fats cells and adipose-derived stem cells in vitro and in vivo: software of DFAT cells remoted by a mesh technique[J]. Int J Mol Sci. 2021;22(22):12392.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao X, Ruzbarsky JJ, Layne JE, Xiao X, Huard J. Stem Cells Bone Tissue Engineering[J] Life. 2024;14(3):287.

    CAS 
    PubMed 

    Google Scholar
     

  • Aghali A. Craniofacial bone tissue engineering: present approaches and potential remedy[J]. Cells. 2021;10(11):2993.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira ÉR, Nie L, Podstawczyk D, Allahbakhsh A, Ratnayake J, Brasil DL, Shavandi A. Advances in progress issue supply for bone tissue engineering[J]. Int J Mol Sci. 2021;22(2):903.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M, Palomo-Irigoyen M, Varela-Rey M, Griffith M, et al. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves[J]. J Cell Biol. 2015;210(1):153–68.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuvellier M, Rose S, Ezan F, Jarry U, de Oliveira H, Bruyère A, et al. In vitro long run differentiation and performance of three-dimensional bioprinted major human hepatocytes: software for in vivo engraftment[J]. Biofabrication. 2022;14(3):035021.

    CAS 

    Google Scholar
     

  • Jeon MJ, Haugen BR. Preclinical fashions of follicular cell-derived thyroid most cancers: an summary from most cancers cell strains to mouse fashions[J]. Endocrinol Metabolism. 2022;37(6):830.


    Google Scholar
     

  • Clark CC, Yoo KM, Sivakumar H, Strumpf Ok, Laxton AW, Tatter SB, Strowd RE, Skardal A. Immersion bioprinting of hyaluronan and collagen bioink-supported 3D patient-derived mind tumor organoids[J]. Biomed Mater. 2022;18(1):015014.


    Google Scholar
     

  • Wu Y, Chen X, Bao W, Hong X, Li C, Lu J, Zhang D, Zhu A. Impact of humantenine on mRNA m6A modification and expression in human colon most cancers cell line HCT116[J]. Genes. 2022;13(5):781.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Y, Deng B, He R, Huang P. Developments of 3D bioprinting in regenerative medication: exploring cell sources for organ fabrication[J]. Heliyon, 2024.

  • Han P, Raveendran N, Liu C, Basu S, Jiao Ok, Johnson N, Moran CS, Ivanovski S. 3D bioprinted small extracellular vesicles from periodontal cells improve mesenchymal stromal cell operate[J]. Biomaterials Adv. 2024;158:213770.

    CAS 

    Google Scholar
     

  • Bastami F, Nazeman P, Moslemi H, Rezai Rad M, Sharifi Ok, Khojasteh AJCP. Induced pluripotent stem cells as a brand new getaway for bone tissue engineering: a scientific evaluation[J]. Cell Prolif. 2017;50(2):e12321.

    PubMed 

    Google Scholar
     

  • Track X, Hu M, Li B, Zhang Ok, Zhang X, Wang L. Advancing medical gadget regulatory reforms for innovation, translation and trade improvement in China[J]. J Orthop Translation. 2022;37:89–93.


    Google Scholar
     

  • Morrison RJ, Kashlan KN, Flanangan CL, Wright JK, Inexperienced GE, Hollister SJ, Weatherwax KJ. Regulatory concerns within the design and manufacturing of implantable 3D-printed medical gadgets[J]. Clin Transl Sci. 2015;8(5):594–600.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naghshineh N, Brown S, Cederna PS, Levi B, Lisiecki J, D’Amico RA, Hume KM, Seward W, Rubin JP. Demystifying the US Meals and Drug Administration: understanding regulatory pathways[J]. Plast Reconstr Surg. 2014;134(3):559–69.

    CAS 
    PubMed 

    Google Scholar
     

  • Ghelich P, Kazemzadeh-Narbat M, Hassani Najafabadi A, Samandari M, Memić A, Tamayol A. (Bio) manufactured options for therapy of bone defects with an emphasis on US-FDA regulatory science perspective[J]. Adv Nanobiomed Res. 2022;2(4):2100073.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy SV, De Coppi P, Atala AJN. Alternatives and challenges of translational 3D bioprinting[J]. Nat Biomedical Eng. 2020;4(4):370–80.


    Google Scholar
     

  • Miki Y, Ono Ok, Hata S, Suzuki T, Kumamoto H. Sasano HJTJosb, biology m. Some great benefits of co-culture over mono cell tradition in simulating in vivo atmosphere[J]. J Steroid Biochem Mol Biol. 2012;131(3–5):68–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP. Recapitulating macro-scale tissue self-organization via organoid bioprinting[J]. Nat Mater. 2020;20(1):22–9.

    PubMed 

    Google Scholar
     

  • Lai J, Liu Y, Lu G, Yung P, Wang X, Tuan RS, Li ZA. 4D bioprinting of programmed dynamic tissues[J]. Bioactive Mater. 2024;37:348–77.

    CAS 

    Google Scholar
     

  • Wang J, Yang X, Xu M, Liu H, Liu L, Tan Z. Distinct mobile microenvironment with cytotypic results regulates orderly regeneration of vascular tissues[J]. Mater At present Bio. 2024;26:101033.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maharjan S, Ma C, Singh B, Kang H, Orive G, Yao J, Zhang YS. Superior 3D imaging and organoid bioprinting for biomedical analysis and therapeutic functions[J]. Adv Drug Deliv Rev, 2024:115237.

  • [118] Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, et al. Organoid Mannequin Tumor Immune microenvironment[J] Cell. 2018;175(7):1972–88. e1916.

    CAS 
    PubMed 

    Google Scholar
     

  • Brassard JA, Lutolf MPJC. Engineering stem cell self-organization to construct higher organoids[J]. Cell Stem Cell. 2019;24(6):860–76.

    CAS 
    PubMed 

    Google Scholar
     

  • Akiva A, Melke J, Ansari S, Liv N, van der Meijden R, van Erp M, et al. An organoid for woven bone[J]. Adv Funct Mater. 2021;31(17):2010524.

    CAS 

    Google Scholar
     

  • Fatehullah A, Tan SH, Barker NJN. Organoids as an in vitro mannequin of human improvement and illness[J]. Nat Cell Biol. 2016;18(3):246–54.

    PubMed 

    Google Scholar
     

  • Chen S, Chen X, Geng Z, Su JJBM. The horizon of bone organoid: a perspective on development and software[J]. Bioactive Mater. 2022;18:15–25.

    CAS 

    Google Scholar
     

  • Bertassoni LE. Bioprinting of Complicated Multicellular organs with Superior functionality-recent Progress and challenges Forward[J]. Adv Mater. 2022;34(3):e2101321.

    PubMed 

    Google Scholar
     

  • Chakraborty J, Chawla S, Ghosh SJCOB. Developmental biology-inspired tissue engineering by combining organoids and 3D bioprinting[J]. Curr Opin Biotechnol. 2022;78:102832.

    CAS 
    PubMed 

    Google Scholar
     

  • Lawlor KT, Vanslambrouck JM, Higgins JW, Chambon A, Bishard Ok, Arndt D, et al. Mobile extrusion bioprinting improves kidney organoid reproducibility and conformation[J]. Nat Mater. 2021;20(2):260–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Humphreys BDJNM. Bioprinting higher kidney organoids[J]. Nat Mater. 2021;20(2):128–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MPJNM. Recapitulating macro-scale tissue self-organization via organoid bioprinting[J]. Nat Mater. 2021;20(1):22–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Lancaster MA, Knoblich JAJS. Organogenesis in a dish: modeling improvement and illness utilizing organoid applied sciences[J]. Science. 2014;345(6194):1247125.

    PubMed 

    Google Scholar
     

  • Watanabe N, Santostefano KE, Yachnis AT, Terada NJLI. A pathologist’s perspective on induced pluripotent stem cells[J]. Lab Make investments. 2017;97(10):1126–32.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang S-C, Wernig M, Duncan ID, Brüstle O. Thomson JAJNb. In vitro differentiation of transplantable neural precursors from human embryonic stem cells[J]. Nature biotechnology, 2001, 19(12):1129–1133.

  • Tang X-Y, Wu S, Wang D, Chu C, Hong Y, Tao M, et al. Human organoids in primary analysis and medical functions[J]. Sign Transduct Goal Remedy. 2022;7(1):168.


    Google Scholar
     

  • Lee H, Son M-Y. Present challenges related to using human induced pluripotent stem cell-derived organoids in regenerative medication[J]. Int J Stem Cells. 2021;14(1):9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [131] Sato T, Vries RG, Snippert HJ, Van De Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells construct crypt-villus buildings in vitro with no mesenchymal area of interest[J]. Nature. 2009;459(7244):262–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Spicer PP, Kretlow JD, Younger S, Jansen JA, Kasper FK, Mikos AGJNp. Analysis of bone regeneration utilizing the rat essential measurement calvarial defect[J]. Nat Protoc. 2012;7(10):1918–29.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao C, Peng S, Feng P, Shuai CJB. Bone biomaterials and interactions with stem cells[J]. Bone Res. 2017;5(1):1–33.


    Google Scholar
     

  • Zhang Y, Li G, Wang J, Zhou F, Ren X, Su JJS. Small Joint Organoids 3D Bioprinting: Building Technique and Software[J]. Small, 2023:2302506.

  • Xie C, Liang R, Ye J, Peng Z, Solar H, Zhu Q, et al. Excessive-efficient engineering of osteo-callus organoids for fast bone regeneration inside one month[J]. Biomaterials. 2022;288:121741.

    CAS 
    PubMed 

    Google Scholar
     

  • Nilsson Corridor G, Mendes LF, Gklava C, Geris L, Luyten FP, Papantoniou IJAS. Developmentally engineered callus organoid bioassemblies exhibit predictive in vivo lengthy bone therapeutic[J]. Adv Sci. 2020;7(2):1902295.

    CAS 

    Google Scholar
     

  • Diomede F, Zini N, Gatta V, Fulle S, Merciaro I, D’Aurora M, et al. Human periodontal ligament stem cells cultured onto cortico-cancellous scaffold drive bone regenerative course of[J]. Eur Cells Mater. 2016;32:181–201.

    CAS 

    Google Scholar
     

  • Toh EM, Thenpandiyan AA, Foo AS, Zhang JJ, Lim MJ, Goh CP et al. Medical outcomes of 3D-printed bioresorbable scaffolds for bone tissue engineering—A pilot research on 126 sufferers for burrhole covers in subdural hematoma[J]. Biomedicines, 2022, 10(11).

  • Martelli A, Bellucci D, Cannillo V. Additive manufacturing of polymer/bioactive glass scaffolds for regenerative medication: a evaluation[J]. Polymers. 2023;15(11):2473.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Zhang B, Li M, Li J, Zhang C, Han Y, et al. 3D printing of PLA/n-HA composite scaffolds with custom-made mechanical properties and organic capabilities for bone tissue engineering[J]. Compos Half B: Eng. 2021;224:109192.

    CAS 

    Google Scholar
     

  • Janmohammadi M, Doostmohammadi N, Bahraminasab M, Nourbakhsh MS, Arab S, Asgharzade S, Ghanbari A, Satari A. Analysis of recent bone formation in critical-sized rat calvarial defect utilizing 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds[J]. Int J Biol Macromol, 2024:132361.

  • Guastaldi FP, Mahadik B. Bone tissue engineering: bench to bedside utilizing 3d printing[J]. 2022.

  • Schwartz R, Malpica M, Thompson GL, Miri AK. Cell encapsulation in gelatin bioink impairs 3D bioprinting decision[J]. J Mech Behav Biomed Mater. 2020;103:103524.

    CAS 
    PubMed 

    Google Scholar
     

  • Zandrini T, Florczak S, Levato R, Ovsianikov A. Breaking the decision limits of 3D bioprinting: future alternatives and current challenges[J]. Traits Biotechnol. 2023;41(5):604–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Li F, Liu S-F, Liu W, Hou Z-W, Jiang J, Fu Z, et al. 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals[J]. Science. 2023;381(6665):1468–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Daly AC, Lim KS. Excessive decision lithography 3D bioprinting[J]. Traits Biotechnol. 2023;41(3):262–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Wu Y, Li G, Zhou F, Wu X, Wang M et al. Engineering large-scale self‐mineralizing bone organoids with bone matrix‐impressed Hydroxyapatite Hybrid Bioinks[J]. Adv Mater, 2024:2309875.

  • Lee J, Chung SW. Deep studying for orthopedic illness based mostly on medical picture evaluation: Current and future[J]. Appl Sci. 2022;12(2):681.

    CAS 

    Google Scholar
     

  • Kolomenskaya E, Butova V, Poltavskiy A, Soldatov A, Butakova M. Software of Synthetic Intelligence in any respect phases of bone tissue Engineering[J]. Biomedicines. 2023;12(1):76.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi AH. Synthetic Intelligence, Machine Studying, and Neural Community. In: Bone Transforming and Osseointegration of Implants Springer; 2023: 83–96.

  • Babu SS, Mourad A-HI, Harib KH, Vijayavenkataraman S. Current developments within the software of machine-learning in direction of accelerated predictive multiscale design and additive manufacturing[J]. Digital Phys Prototyp. 2023;18(1):e2141653.


    Google Scholar
     

  • Bonatti AF, Vozzi G, De Maria C. Enhancing high quality management in bioprinting via machine studying[J]. Biofabrication. 2024;16(2):022001.


    Google Scholar
     

  • Monfared V. Software of Synthetic Intelligence (Machine Studying) in Additive Manufacturing, Bio-Methods, Bio-medicine, and composites. Additive Manufacturing for biocomposites and Artificial composites. CRC; 2023. pp. 152–203.

  • Leave a Reply

    Your email address will not be published. Required fields are marked *