Bolometric detection of Josephson radiation

  • Josephson, B. D. Potential new results in superconductive tunnelling. Phys. Lett. 1, 251 (1962).

    Article 

    Google Scholar
     

  • Giaever, I. Detection of the ac Josephson impact. Phys. Rev. Lett. 14, 904 (1965).

    Article 

    Google Scholar
     

  • Tinkham, M. Introduction to Superconductivity 2nd edn (Dover, 2004).

  • Devoret, M. H., Martinis, J. M. & Clarke, J. Measurements of macroscopic quantum tunneling out of the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett. 55, 1908 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vion, D., Gotz, M., Joyez, P., Esteve, D. & Devoret, M. H. Thermal activation above a dissipation barrier: switching of a small Josephson junction. Phys. Rev. Lett. 77, 3435 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Golubov, A. A., Kupriyanov, M. Y. & Il’ichev, E. The present-phase relation in Josephson junctions. Rev. Mod. Phys. 76, 411 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Ivanchenko, Yu. M. & Zil’berman, L. A. The Josephson impact in small tunnel contacts. Sov. Phys. JETP 28, 1272 (1969).


    Google Scholar
     

  • Caldeira, A. O. & Leggett, A. J. Quantum tunnelling in a dissipative system. Ann. Phys. 149, 374 (1983).

    Article 

    Google Scholar
     

  • Benz, S. P. Josephson junctions for metrology functions. In Fundamentals and Frontiers of the Josephson Impact Vol. 286 (ed. Tafuri, F.) (Springer, 2019).

  • Pedersen, N. F. et al. Direct detection of the Josephson radiation emitted from superconducting skinny movie microbridges. Appl. Phys. Lett. 28, 562 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Soerensen, O. H. et al. Nonresonant detection of Josephson radiation from thin-film microbridges. J. Appl. Phys. 48, 5372 (1977).

    Article 

    Google Scholar
     

  • van Woerkom, D. J. et al. Josephson radiation and shot noise of a semiconductor nanowire junction. Phys. Rev. B 96, 094508 (2017).

    Article 

    Google Scholar
     

  • Haller, R. et al. Section-dependent microwave response of a graphene Josephson junction. Phys. Rev. Res. 4, 013198 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bretheau, L., Girit, Ç. Ö., Pothier, H., Esteve, D. & Urbina, C. Thrilling Andreev pairs in a superconducting atomic contact. Nature 499, 312 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bretheau, L., Girit, Ç. Ö., Urbina, C., Esteve, D. & Pothier, H. Supercurrent spectroscopy of Andreev states. Phys. Rev. X 3, 041034 (2013).

    CAS 

    Google Scholar
     

  • Deacon, R. S. et al. Josephson radiation from gapless Andreev sure states in HgTe-based topological junctions. Phys. Rev. X 7, 021011 (2017).


    Google Scholar
     

  • Haller, R. et al. ac Josephson impact in a gate-tunable Cd3As2 nanowire superconducting weak hyperlink. Phys. Rev. B 108, 094514 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Irwin, Okay. D. & Hilton, G. C. in Cryogenic Particle Detection (ed. Enss, C.) (Springer, 2005).

  • Richards, P. L. Bolometers for infrared and millimeter waves. J. Appl. Phys. 76, 1 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Karimi, B., Brange, F., Samuelsson, P. & Pekola, J. P. Reaching the last word power decision of a quantum detector. Nat. Commun. 11, 367 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kokkoniemi, R. et al. Bolometer working on the threshold for circuit quantum electrodynamics. Nature 586, 47 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morozov, D. V., Casaburi, A. & Hadfield, R. H. Superconducting photon detectors. Contemp. Phys. 62, 69 (2021).

    Article 

    Google Scholar
     

  • Walsh, E. D. et al. Josephson junction infrared single-photon detector. Science 372, 409 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gümüş, E. et al. Calorimetry of a section slip in a Josephson junction. Nat. Phys. 19, 196 (2023).


    Google Scholar
     

  • Ibabe, A. et al. Joule spectroscopy of hybrid superconductor–semiconductor nanodevices. Nat. Commun. 14, 2873 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nahum, M. & Martinis, J. M. Ultrasensitive-hot-electron microbolometer. Appl. Phys. Lett. 63, 3075 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Alternatives for mesoscopics in thermometry and refrigeration: physics and functions. Rev. Mod. Phys. 78, 217 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Peltonen, J. T. et al. Thermal conductance by the inverse proximity impact in a superconductor. Phys. Rev. Lett. 105, 097004 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pekola, J. P. & Karimi, B. Colloquium: quantum warmth transport in condensed matter methods. Rev. Mod. Phys. 93, 041001 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yeh, J. T. C. & Langenberg, D. N. Hole suppression by self-injection of quasiparticles in tin-tin-oxide-tin tunnel junctions. Phys. Rev. B 17, 4303 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Winkler, D. & Claeson, T. Non-equilibrium superconductivity in aluminium tunnel junctions by self-injection and millimeter wave radiation. Phys. Scr. 32, 317 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Ambegaokar, V. & Baratoff, A. Tunneling between superconductors. Phys. Rev. Lett. 10, 486 (1963).

    Article 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *