Single-molecule sensing inside stereo- and regio-defined hetero-nanopores

  • Möller, L., Regnier, G., Labro, A. J., Blunck, R. & Snyders, D. J. Figuring out the right stoichiometry of Kv2.1/Kv6.4 heterotetramers, purposeful in a number of stoichiometrical configurations. Proc. Natl Acad. Sci. USA 117, 9365–9376 (2020).

  • Wieczorek, M. et al. Uneven molecular structure of the human γ-tubulin ring complicated. Cell 180, 165–175 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hofmann, S. et al. Conformation area of a heterodimeric ABC exporter underneath turnover circumstances. Nature 571, 580–583 (2019).

  • Zhang, D. et al. Gating and modulation of a hetero-octameric AMPA glutamate receptor. Nature 594, 454–458 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemmens, L. J. et al. Designed uneven protein meeting on a symmetric scaffold. Angew. Chem. Int. Ed. 59, 12113–12121 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cordeiro, S. et al. Conotoxin kappaM-RIIIJ, a software concentrating on uneven heteromeric Kv1 channels. Proc. Natl Acad. Sci. USA 116, 1059–1064 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, Q. et al. Structural foundation for Ca2+ activation of the heteromeric PKD1L3/PKD2L1 channel. Nat. Commun. 12, 4871 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laverty, D. et al. Cryo-EM construction of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature 565, 516–520 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emiri et al. The IgM pentamer is an uneven pentagon with an open groove that binds the AIM protein. Sci. Adv. 4, eaau1199 (2018).

    Article 

    Google Scholar
     

  • Rullo-Tubau, J. et al. Construction and mechanisms of transport of human Asc1/CD98hc amino acid transporter. Nat. Commun. 15, 2986 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavlenok, M., Yu, L., Herrmann, D., Wanunu, M. & Niederweis, M. Management of subunit stoichiometry in single-chain MspA nanopores. Biophys. J. 121, 742–754 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of particular person polynucleotide molecules utilizing a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ying, Y.-L. et al. Nanopore-based applied sciences past DNA sequencing. Nat. Nanotechnol. 17, 1136–1146 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manrao, E. A. et al. Studying DNA at single-nucleotide decision with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steffensen, M. B., Rotem, D. & Bayley, H. Single-molecule evaluation of chirality in a multicomponent response community. Nat. Chem. 6, 603–607 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, W. et al. Nanopore sensing. Anal. Chem. 89, 157–188 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koch, C. et al. Nanopore sequencing of DNA-barcoded probes for extremely multiplexed detection of microRNA, proteins and small biomarkers. Nat. Nanotechnol. 18, 1483–1491 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thakur, A. Ok. & Movileanu, L. Actual-time measurement of protein–protein interactions at single-molecule decision utilizing a organic nanopore. Nat. Biotechnol. 37, 96–101 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Galenkamp, N. S., Biesemans, A. & Maglia, G. Directional conformer change in dihydrofolate reductase revealed by single-molecule nanopore recordings. Nat. Chem. 12, 481–488 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Allosteric switching of calmodulin in a Mycobacterium smegmatis porin A (MspA) nanopore-trap. Angew. Chem. Int. Ed. 60, 23863–23870 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xing, Y. et al. Extremely shape- and size-tunable membrane nanopores made with DNA. Nat. Nanotechnol. 17, 708–713 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, F., Gilliam, Ok., Pham, R. & Chen, M. Mapping the conformational power panorama of Abl kinase utilizing ClyA nanopore tweezers. Nat. Commun. 13, 3541 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutherland, T. C. et al. Construction of peptides investigated by nanopore evaluation. Nano Lett. 4, 1273–1277 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. A number of rereads of single proteins at single-amino acid decision utilizing nanopores. Science 374, 1509–1513 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimizu, Ok. et al. De novo design of a nanopore for single-molecule detection that comes with a β-hairpin peptide. Nat. Nanotechnol. 17, 67–75 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xin, Ok. L. et al. 3D blockage mapping for figuring out familial level mutations in single amyloid-β peptides with a nanopore. Angew. Chem. Int. Ed. 61, e202209970 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Peptide sequencing based mostly on host–visitor interaction-assisted nanopore sensing. Nat. Strategies 21, 102–109 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, C. et al. Discrimination of oligonucleotides of various lengths with a wild-type aerolysin nanopore. Nat. Nanotechnol. 11, 713–718 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. & Wu, H. C. DNA-based nanopore sensing. Angew. Chem. Int. Ed. 55, 15216–15222 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Strategies 16, 1297–1305 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boersma, A. J. & Bayley, H. Steady stochastic detection of amino acid enantiomers with a protein nanopore. Angew. Chem. Int. Ed. 124, 9744–9747 (2012).

    Article 

    Google Scholar
     

  • Wang, J. et al. Identification of single amino acid chiral and positional isomers utilizing an electrostatically uneven nanopore. J. Am. Chem. Soc. 144, 15072–15078 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramsay, W. J. & Bayley, H. Single-molecule dedication of the isomers of d-glucose and d-fructose that bind to boronic acids. Angew. Chem. Int. Ed. 57, 2841–2845 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cheley, S., Braha, O., Lu, X., Conlan, S. & Bayley, H. A purposeful protein pore with a ‘retro’ transmembrane area. Protein Sci. 8, 1257–1267 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. A nanopore-based saccharide sensor. Angew. Chem. Int. Ed. 61, e202203769 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Howorka, S., Cheley, S. & Bayley, H. Sequence-specific detection of particular person DNA strands utilizing engineered nanopores. Nat. Biotechnol. 19, 636–639 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeid, L. A. et al. Separation of multiphosphorylated cyclopeptides and their positional isomers by hydrophilic interplay liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI-MS). J. Chromatogr. B 1177, 122792 (2023).

    Article 

    Google Scholar
     

  • Tsuzuki, S. et al. Origin of attraction and directionality of the π/π interplay: mannequin chemistry calculations of benzene dimer interplay. J. Am. Chem. Soc. 124, 104–112 (2002).

  • Thakuria, R., Nath, N. Ok. & Saha, B. Ok. The character and purposes of ππ interactions: a perspective. Cryst. Development Des. 19, 523–528 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Burley, S. Ok. & Petsko, G. A. Fragrant–fragrant interplay: a mechanism of protein construction stabilization. Science 229, 23–28 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGaughey, G. B., Gagne, M. & Rappe, A. Ok. π-stacking interactions: alive and effectively in proteins. J. Biol. Chem. 273, 15458–15463 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M.-Y., Wang, Y.-Q., Lu, Y., Ying, Y.-L. & Lengthy, Y.-T. Single molecule examine of hydrogen bond interactions between single oligonucleotide and aerolysin sensing interface. Entrance. Chem. 7, 528 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids utilizing an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X.-Y. et al. Exact building and tuning of an aerolysin single-biomolecule interface for single-molecule sensing. CCS Chem. 1, 304–312 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W. et al. Profiling single-molecule response kinetics underneath nanopore confinement. Chem. Sci. 13, 4109–4114 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. et al. Observing confined native oxygen-induced reversible thiol/disulfide cycle with a protein nanopore. Angew. Chem. Int. Ed. 62, e202304023 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, J. et al. Protein nanopore reveals the renin–angiotensin system crosstalk with single-amino-acid decision. Nat. Chem. 15, 578–586 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong C.-B. et al. Dice-SmartNano. Zenodo https://zenodo.org/data/11609574 (2024).

  • Zhang, L-L. et al. Excessive-throughput single biomarker identification utilizing droplet nanopore. Chem. Sci. 15, 8355–8362 (2024).

  • Li, M.-Y. et al. Revisiting the origin of nanopore present blockage for quantity distinction sensing on the atomic degree. JACS Au 1, 967–976 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of easy potential features for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, Ok. VMD: Visible Molecular Dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finest, R. B. et al. Optimization of the additive CHARMM all-atom protein pressure subject concentrating on improved sampling of the spine ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Principle Comput. 8, 3257–3273 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanommeslaeghe, Ok. et al. CHARMM normal pressure subject: a pressure subject for drug-like molecules suitable with the CHARMM all-atom additive organic pressure fields. J. Comput. Chem. 31, 671–690 (2010).

  • Feller, S. E., Zhang, Y., Pastor, R. W. & Brooks, B. R. Fixed stress molecular dynamics simulation: the Langevin piston technique. J. Chem. Phys. 103, 4613–4621 (1995).

    Article 
    CAS 

    Google Scholar
     

  • York, D. M., Darden, T. A. & Pedersen, L. G. The impact of long-range electrostatic interactions in simulations of macromolecular crystals: a comparability of the Ewald and truncated listing strategies. J. Chem. Phys. 99, 8345–8348 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Allen, M. P. & Tildesley, D. J. Pc Simulation of Liquids (Oxford Univ. Press, 2017).

  • Case, D. A. et al. AmberTools. J. Chem. Inf. Mannequin. 63, 6183–6191 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Case, D. A. et al. Amber 2023 (Univ. California, San Francisco, 2023).

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for speedy unsupervised cryo-EM construction dedication. Nat. Strategies 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Strategies 17, 1214–1221 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenthal, P. B. & Henderson, R. Optimum dedication of particle orientation, absolute hand, and distinction loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S.-C. & Lengthy, Y.-T. PyNanoLab. Zenodo https://doi.org/10.5281/zenodo.11383973 (2019).

  • Liu, W. et al. Single-molecule sensing inside stereo- and regio-defined hetero-nanopores. Zenodo https://zenodo.org/data/11371804 (2024).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *