Photobleaching-mediated charge-convertible cyclodextrin nanoparticles obtain deep tumour penetration for rectal most cancers theranostics

  • Jain, R. Ok. & Stylianopoulos, T. Delivering nanomedicine to strong tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. Rational design of nanoparticles with deep tumor penetration for efficient therapy of tumor metastasis. Adv. Funct. Mater. 28, 1801840 (2018).

    Article 

    Google Scholar
     

  • Souri, M., Soltani, M., Moradi Kashkooli, F. & Kiani Shahvandi, M. Engineered methods to boost tumor penetration of drug-loaded nanoparticles. J. Management. Launch 341, 227–246 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, C. et al. Multistage nanoparticle supply system for deep penetration into tumor tissue. Proc. Natl Acad. Sci. USA 108, 2426–2431 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Q. et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and therapy efficacy. Nat. Nanotechnol. 14, 799–809 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, G. W. et al. Enzyme-triggered transcytosis of dendrimer-drug conjugate for deep penetration into pancreatic tumors. ACS Nano 14, 4890–4904 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Transcytosis of nanomedicine for tumor penetration. Nano Lett. 19, 8010–8020 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanco, E., Shen, H. & Ferrari, M. Ideas of nanoparticle design for overcoming organic obstacles to drug supply. Nat. Biotechnol. 33, 941–951 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Dimension and cost dual-transformable mesoporous nanoassemblies for enhanced drug supply and tumor penetration. Chem. Sci. 11, 2819–2827 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, L. L. et al. Dimension/cost changeable acidity-responsive micelleplex for photodynamic-improved PD-L1 immunotherapy with enhanced tumor penetration. Adv. Funct. Mater. 28, 1707249 (2018).

    Article 

    Google Scholar
     

  • Zhen, J. R. et al. Nanocarriers aware of a hypoxia gradient facilitate enhanced tumor penetration and improved anti-tumor efficacy. Biomater. Sci. 7, 2986–2995 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H., Kong, X., Tang, Y. & Lin, W. Hydrogen sulfide triggered charge-reversal micelles for cancer-targeted drug supply and imaging. ACS Appl. Mater. Interfaces 8, 16227–16239 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y., Yang, H. Y., Thambi, T., Park, J. H. & Lee, D. S. Cost-convertible polymers for improved tumor focusing on and enhanced remedy. Biomaterials 217, 119299 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mi, P. Stimuli-responsive nanocarriers for drug supply, tumor imaging, remedy and theranostics. Theranostics 10, 4557–4588 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paschke, S. et al. Are colon and rectal most cancers two completely different tumor entities? A proposal to desert the time period colorectal most cancers. Int. J. Mol. Sci. 19, 2577 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rawla, P., Sunkara, T. & Barsouk, A. Epidemiology of colorectal most cancers: incidence, mortality, survival, and threat components. Prz. Gastroenterol. 14, 89–103 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, S., Kato, T. & Tanaka, J. I. Defining the distal margin of rectal most cancers for surgical planning. J. Gastrointest. Oncol. 8, 194–198 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubinkiewicz, M. et al. A quest for sphincter-saving surgical procedure in ultralow rectal tumours—a single-centre cohort examine. World J. Surg. Oncol. 16, 218 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheele, J. et al. High quality of life after sphincter-preserving rectal most cancers resection. Clin. Colorectal Most cancers 14, e33–e40 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Chiang, J. M. et al. Rectal most cancers stage considerably impacts charges and patterns of distant metastases amongst rectal most cancers sufferers submit curative-intent surgical procedure with out neoadjuvant remedy. World J. Surg. Oncol. 12, 197 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruheim, Ok. et al. Sexual perform in females after radiotherapy for rectal most cancers. Acta Oncol. 49, 826–832 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Choi, S. H. et al. Diminished pelvic area sparing anastomosis for postoperative radiotherapy in chosen sufferers with mid-upper rectal most cancers. J. Radiat. Res. 58, 559–566 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruheim, Ok. et al. Late unwanted effects and high quality of life after radiotherapy for rectal most cancers. Int. J. Radiat. Oncol. Biol. Phys. 76, 1005–1011 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Li, X., Lovell, J. F., Yoon, J. & Chen, X. Medical improvement and potential of photothermal and photodynamic therapies for most cancers. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Guidolin, Ok. et al. Photodynamic remedy for colorectal most cancers: a scientific evaluate of medical analysis. Surg. Innov. 29, 788–803 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L. et al. Progress of nanomaterials in photodynamic remedy in opposition to tumor. Entrance. Bioeng. Biotechnol. 10, 920162 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alsaab, H. O. et al. Progress in medical trials of photodynamic remedy for strong tumors and the position of nanomedicine. Cancers 12, 2793 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, L. et al. Enzyme-triggered deep tumor penetration of a dual-drug nanomedicine allows an enhanced most cancers mixture remedy. Bioact. Mater. 26, 102–115 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, D. et al. Overcoming the obstacles of present photodynamic remedy in tumors utilizing nanoparticles. Bioact. Mater. 8, 20–34 (2022).

    PubMed 

    Google Scholar
     

  • Baek, M.-J. et al. Tailoring renal-clearable zwitterionic cyclodextrin for colorectal cancer-selective drug supply. Nat. Nanotechnol. 18, 945–956 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, Z., Zhang, X., Zheng, X., Liu, S. & Xie, Z. Porphyrin–ferrocene conjugates for photodynamic and chemodynamic remedy. Org. Biomol. Chem. 16, 8613–8619 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tapia Hernandez, R., Lee, M. C., Yadav, A. Ok. & Chan, J. Repurposing cyanine photoinstability to develop near-infrared light-activatable nanogels for in vivo cargo supply. J. Am. Chem. Soc. 144, 18101–18108 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Facciotti, C. et al. Oxidant-responsive ferrocene-based cyclodextrin complicated coacervate coremicelles. Supramol. Chem. 32, 30–38 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wan, Q. et al. Molecular engineering to spice up AIE-active free radical photogenerators and allow high-performance photodynamic remedy beneath hypoxia. Adv. Funct. Mater. 30, 2002507 (2020).

    Article 

    Google Scholar
     

  • Meng, X. et al. Twin-responsive molecular probe for tumor focused imaging and photodynamic remedy. Theranostics 7, 1781–1794 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortunate, S. S., Soo, Ok. C. & Zhang, Y. Nanoparticles in photodynamic remedy. Chem. Rev. 4, 1990–2042 (2015).

    Article 

    Google Scholar
     

  • Yu, Y. et al. Cationization to spice up each kind I and kind II ROS era for photodynamic remedy. Biomaterials 280, 121255 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, L. et al. Gentle photothermal remedy potentiates anti-PD-L1 therapy for immunologically chilly tumors by way of an all-in-one and all-in-control technique. Nat. Commun. 10, 4871 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, X., Shao, Z. & Zhao, Y. Options to the drawbacks of photothermal and photodynamic most cancers remedy. Adv. Sci. 8, 2002504 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. J., Wang, Ok. P., Mo, J. G., Xiong, L. & Wen, Y. Photodynamic remedy regulates destiny of most cancers stem cells by reactive oxygen species. World J. Stem Cells 12, 562–584 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forkasiewicz, A. et al. The usefulness of lactate dehydrogenase measurements in present oncological observe. Cell. Mol. Biol. Lett. 25, 35 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ninomiya, I. et al. Anti-metastatic impact of capecitabine on human colon most cancers xenografts in nude mouse rectum. Int. J. Most cancers 112, 135–142 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolze, F., Jenni, S., Bitter, A. & Heitz, V. Molecular photosensitisers for two-photon photodynamic remedy. Chem. Commun. 53, 12857–12877 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kasashima, H. et al. Mouse mannequin of colorectal most cancers: orthotopic co-implantation of tumor and stroma cells in cecum and rectum. STAR Protoc. 2, 100297 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *