Fusiform nanoparticle boosts environment friendly genetic transformation in Sclerotinia sclerotiorum | Journal of Nanobiotechnology

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. Rising fungal threats to animal, plant and ecosystem well being. Nature. 2012;484:186–94.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Steinberg G, Gurr SJ. Fungi, fungicide discovery and world meals safety. Fungal Genet Biol. 2020;144:103476.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Manici LM, Bregaglio S, Fumagalli D, Donatelli M. Modelling soil borne fungal pathogens of arable crops below local weather change. Int J Biometeorol. 2014;58(10):2071–83.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bolton MD, Thomma BPHJ, Nelson BD. Sclerotinia Sclerotiorum (Lib.) De Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol. 2006;7:1–16.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kabbage M, Yarden O, Dickman MB. Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic way of life. Plant Sci. 2015;233:53–60.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xia ST, Xu Y, Hoy RH, Zhang JX, Qin L, Li X. The infamous soilborne pathogenic fungus Sclerotinia sclerotiorum: an replace on genes studied with mutant evaluation. Pathogens. 2019;9:27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li DD, Tang Y, Lin J, Cai WW. Strategies for genetic transformation of filamentous fungi. Microb Cell Reality. 2017;16:168.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu ZH, Friesen TL. Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. Strategies Mol Biol. 2012;835:365–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Weld RJ, Eady CC, Ridgway HJ. Agrobacterium-mediated transformation of Sclerotinia Sclerotiorum. J Microbiol Strategies. 2006;65:202–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sanford JC, Smith FD, Russell JA. Optimizing the biolistic course of for various organic functions. Strategies Enzymol. 1993;217:483–509.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Te’o VSJ, Nevalainen KMH. Use of the biolistic particle supply system to remodel fungal genomes. Springer Worldwide Publishing; 2015. https://doi.org/10.1007/978-3-319-10142-2_12.

  • Magaña-Ortíz D, Coconi-Linares N, Ortiz-Vazquez E, Fernández F, Loske AM, Gómez-Lim MA. A novel and extremely environment friendly technique for genetic transformation of fungi using shock waves. Fungal Genet Biol. 2013;56:9–16.

    Article 
    PubMed 

    Google Scholar
     

  • Rivera AL, Magaña-Ortíz D, Gómez-Lim M, Fernández F, Loske AM. Bodily strategies for genetic transformation of fungi and yeast. Phys Life Rev. 2014;11:184–203.

    Article 
    PubMed 

    Google Scholar
     

  • Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based remedy. Nat Rev Genet. 2014;15:541–55.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin SY, Trewyn BG, Lyznik LA, Wang Okay. Mesoporous silica nanoparticle-mediated intracellular cre protein supply for maize genome enhancing through loxP web site excision. Plant Physiol. 2014;164:537–47.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao X, Meng ZG, Wang Y, Chen WJ, Solar CJ, Cui B, Cui JH, Yu ML, Zeng ZH, Guo SD, et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Crops. 2017;3:956–64.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang ZP, Zhang ZB, Zheng DY, Zhang TT, Li XL, Zhang C, Yu R, Wei JH, Wu ZY. Environment friendly and genotype impartial maize transformation utilizing pollen transfected by DNA-coated magnetic nanoparticles. J Integr Plant Biol. 2022;64:1145–56.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ben-Haim AE, Feldbaum RA, Belausov E, Zelinger E, Maria R, Nativ-Roth E, Mani KA, Barda O, Sionov E, Mechrez G. DNA supply to intact plant cells by casein nanoparticles with confirmed gene expression. Adv Funct Mater. 2024;34:2314756.

    Article 
    CAS 

    Google Scholar
     

  • Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP. Carbon nanocarriers ship siRNA to intact plant cells for environment friendly gene knockdown. Sci Adv. 2020;6:eaaz0495.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cai Y, Liu ZJ, Wang H, Meng H, Cao YH. Mesoporous silica nanoparticles mediate SiRNA supply for long-term multi-gene silencing in itact plnats. Adv Sci. 2024;1(19):2301358.

    Article 

    Google Scholar
     

  • Yu P, Zheng XG, Alimi LO, AI-Babili S, Khashab NM. Metallic-organic framework-mediated supply of nucleic acid throughout intact plant cells. ACS Appl Mater Interfaces. 2024;17(15):18245–51.

    Article 

    Google Scholar
     

  • Jat SK, Bhattacharya J, Sharma MK. Nanomaterial primarily based gene supply: a promising technique for plant genome engineering. J Mater Chem B. 2020;8:4165–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Vijayakumar PS, Abhilash OU, Khan BM, Prasad BLV. Nanogold-loaded sharp‐edged carbon bullets as plant‐gene carriers. Adv Funct Mater. 2010;20:2416–23.

    Article 
    CAS 

    Google Scholar
     

  • Naqvi S, Maitra AN, Abdin MZ, Akmal Md, Arora I, Samim Md. Calcium phosphate nanoparticle mediated genetic transformation in vegetation. J Mater Chem. 2012;22:3500.

    Article 
    CAS 

    Google Scholar
     

  • Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQM, Xu ZP. Clay nanosheets for topical supply of RNAi for sustained safety towards plant viruses. Nat Crops. 2017;3:16207.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang H, Goh NS, Wang JW, Pinals RL, González-Grandío E, Demirer GS, Butrus S, Fakra SC, Del Rio Flores A, Zhai R, et al. Nanoparticle mobile internalization isn’t required for RNA supply to mature plant leaves. Nat Nanotechnol. 2022;17:197–205.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang JW, Cunningham FJ, Goh NS, Boozarpour NN, Pham M, Landry MP. Nanoparticles for protein supply in planta. Curr Opin Plant Biol. 2021;60:102052.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kwak SY, Giraldo JP, Wong MH, Koman VB, Lew TTS, Ell J, et al. A nanobionic light-emitting plant. Nano Lett. 2017;17:7951–61.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang H, Demirer GS, Zhang H, Ye T, Goh NS, Aditham AJ, Cunningham FJ, Fan C, Landry MP. DNA nanostructures coordinate gene silencing in mature vegetation. Proc Natl Acad Sci U S A. 2019;116(15):7543–8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li S, Li J, Du M, Deng G, Track Z, Han H. Environment friendly gene silencing in intact plant cells utilizing siRNA delivered by purposeful graphene oxide nanoparticles. Angew Chem Int Ed Engl. 2022;61(40):e202210014.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Filyak Y, Finiuk N, Mitina N, Bilyk O, Titorenko V, Hrydzhuk O, Zaichenko A, Stoika R. A novel technique for genetic transformation of yeast cells utilizing oligoelectrolyte polymeric nanoscale carriers. Biotechniques. 2013;54(1):35–43.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Deshmukh Okay, Ramanan SR, Kowshik M. A novel technique for genetic transformation of C. albicans utilizing modified-hydroxyapatite nanoparticles as a plasmid DNA automobile. Nanoscale Adv. 2019;1(8):3015–22.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang XL, Hou SX, Liang MY, Xu JM, Ye MJ, Wang YX, Wen FQ, Xu ZG, Liu SX. Engineering Nanofusiform Iron-doped polydiaminopyridine increase intratumoral penetration for immunogenic cell death-mediated synergistic Photothermal/Chemo remedy. Chem Eng J. 2023;462:142159.

    Article 
    CAS 

    Google Scholar
     

  • Liang XF, Liberti D, Li MY, Kim YT, Hutchens A, Wilson R, Rollins JA. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia Sclerotiorum don’t accumulate oxalic acid, however do produce restricted lesions on host vegetation. Mol Plant Pathol. 2015;16(6):559–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Godoy G, Steadman JR, Dickman MB, Dam R. Use of mutants to reveal the position of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol MolPlant P. 1990;37:179–91.

    CAS 

    Google Scholar
     

  • Leroch M, Mernke D, Koppenhoefer D, Schneider P, Mosbach A, Doehlemann G, Hahn M. Residing colours within the grey mildew pathogen Botrytis Cinerea: codon-optimized genes encoding inexperienced fluorescent protein and mCherry, which exhibit vivid fluorescence. Appl Environ Microbiol. 2011;77:2887–97.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ding YJ, Mei JQ, Chai YR, Yang WJ, Mao Y, Yan BQ, Yu Y, Disi JO, Rana Okay, Li JN, et al. Sclerotinia Sclerotiorum makes use of host-derived copper for ROS cleansing and an infection. PLoS Pathog. 2020;16:e1008919.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Braim FS, Razak NNANA, Aziz AA, Dheyab MA, Ismael LQ. Optimization of ultrasonic-assisted strategy for synthesizing a extremely steady biocompatible bismuth-coated iron oxide nanoparticles utilizing a face-centered central composite design. Ultrason Sonochem. 2023;95:106371–86.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rollins JA. The Sclerotinia Sclerotiorum pac1 gene is required for sclerotial improvement and virulence. Mol Plant Microbe Work together. 2003;16:785–95.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory guide. 2nd ed. Chilly Spring Harbor: Chilly Spring Harbor Laboratory Press; 1989.


    Google Scholar
     

  • Esher SK, Granek JA, Alspaugh JA. Speedy mapping of insertional mutations to probe cell wall regulation in Cryptococcus neoformans. Fungal Genet Biol. 2015;82:9–21.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Livak KJ, Schmittgen TD. Evaluation of relative gene expression information utilizing real-time quantitative PCR and the two(-Delta Delta C(T)) technique. Strategies. 2001;25:402–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu X, Zhang Okay, Liu Y, Xie Z, Zhang C. Oxalic acid from Sesbania Rostrata seed exudates mediates the chemotactic response of Azorhizobium caulinodans ORS571 utilizing a number of methods. Entrance Microbiol. 2019;10:2727.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang DE, Zhu W, Wang YC, Solar C, Zhang KQ, Yang JK. Molecular instruments for purposeful genoics in filamentous fungi: current advances and new methods. Biotechnol Adv. 2013;31(8):1562–74.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ozeki Okay, Kyoya F, Hizume Okay, Kanda A, Hamachi M, Nunokawa Y. Transformation of intact aspergillus Niger by electroporation. Biosci Biotechnol Biochem. 1994;58:2224–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater. 2003;2:338–42.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Amar-Lewis E, Azagury A, Chintakunta R, Goldbart R, Traitel T, Prestwood J, Landesman-Milo D, Peer D, Kost J. Quaternized starch-based service for siRNA supply: from mobile uptake to gene silencing. J Management Launch. 2014;185:109–20.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Solar XD, Yuan XZ, Jia YB, Feng LJ, Zhu FP, Dong SS, Liu JJ, Kong XP, Tian HY, Duan JL, et al. Differentially charged nanoplastics reveal distinct accumulation in Arabidopsis thaliana. Nat Nanotechnol. 2020;15:755–60.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gao MY, Chang J, Wang ZT, Zhang HT, Wang T. Advances in transport and toxicity of nanoparticles in vegetation. J Nanobiotechnol. 2023;21:75.

    Article 
    CAS 

    Google Scholar
     

  • Hola Okay, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL. Carbon dots—rising mild emitters for bioimaging, most cancers remedy and optoelectronics. Nano Immediately. 2014;9:590–603.

    Article 
    CAS 

    Google Scholar
     

  • van den Berg MA, Maruthachalam KM. Genetic transformation programs in fungi. Genetic Transformation Programs in Fungi. Switzerland: Springer Worldwide Publishing; 2015. pp. 3–4.


    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *