Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Corridor states in bilayer graphene

  • Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Canright, G. S. & Girvin, S. M. Fractional statistics: quantum potentialities in two dimensions. Science 247, 1197–1205 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burnell, F. J. Anyon condensation and its functions. Annu. Rev. Condens. Matter Phys. 9, 307–327 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Stern, A. Anyons and the quantum Corridor impact—a pedagogical evaluation. Ann. Phys. 323, 204–249 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct remark of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stern, A. Non-Abelian states of matter. Nature 464, 187–193 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain, J. Okay. Concept of the fractional quantum Corridor impact. Phys. Rev. B 41, 7653–7665 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Feldman, D. E. & Halperin, B. I. Fractional cost and fractional statistics within the quantum Corridor results. Rep. Prog. Phys. 84, 076501 (2021).

    Article 

    Google Scholar
     

  • Halperin, B. I., Stern, A., Neder, I. & Rosenow, B. Concept of the Fabry–Pérot quantum Corridor interferometer. Phys. Rev. B 83, 155440 (2011).

    Article 

    Google Scholar
     

  • Bonderson, P., Shtengel, Okay. & Slingerland, J. Okay. Probing non-Abelian statistics with quasiparticle interferometry. Phys. Rev. Lett. 97, 016401 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Affect of bulk–edge coupling on remark of anyonic braiding statistics in quantum Corridor interferometers. Nat. Commun. 13, 344 (2021).

    Article 

    Google Scholar
     

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Fabry–Pérot interferometry on the ν = 2/5 fractional quantum Corridor state. Phys. Rev. X 13, 041012 (2023).

    CAS 

    Google Scholar
     

  • Kundu, H. Okay., Biswas, S., Ofek, N., Umansky, V. & Heiblum, M. Anyonic interference and braiding section in a Mach–Zehnder interferometer. Nat. Phys. 19, 515–521 (2023).

    Article 
    CAS 

    Google Scholar
     

  • McClure, D. T., Chang, W., Marcus, C. M., Pfeiffer, L. N. & West, Okay. W. Fabry–Perot interferometry with fractional expenses. Phys. Rev. Lett. 108, 256804 (2011).

    Article 

    Google Scholar
     

  • Carrega, M., Chirolli, L., Heun, S. & Sorba, L. Anyons in quantum Corridor interferometry. Nat. Rev. Phys. 3, 698–711 (2021).

    Article 

    Google Scholar
     

  • Ji, Y. et al. An digital Mach–Zehnder interferometer. Nature 422, 415–418 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Legislation, Okay. T., Feldman, D. E. & Gefen, Y. Digital Mach–Zehnder interferometer as a device to probe fractional statistics. Phys. Rev. B 74, 045319 (2006).

    Article 

    Google Scholar
     

  • Feldman, D. E., Gefen, Y., Kitaev, A., Legislation, Okay. T. & Stern, A. Shot noise in an anyonic Mach–Zehnder interferometer. Phys. Rev. B 76, 085333 (2007).

    Article 

    Google Scholar
     

  • Ponomarenko, V. V. & Averin, D. V. Mach–Zehnder interferometer within the fractional quantum Corridor regime. Phys. Rev. Lett. 99, 066803 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Chamon, C. et al. Two point-contact interferometer for quantum Corridor techniques. Phys. Rev. B 55, 2331–2343 (1997).

    Article 

    Google Scholar
     

  • Feldman, D. E. & Halperin, B. I. Robustness of quantum Corridor interferometry. Phys. Rev. B 105, 165310 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ofek, N. et al. Position of interactions in an digital Fabry–Perot interferometer working within the quantum Corridor impact regime. Proc. Natl Acad. Sci. USA 107, 5276–5281 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willett, R. L. et al. Interference measurements of non-Abelian e/4 & Abelian e/2 quasiparticle braiding. Phys. Rev. X 13, 011028 (2023).

    CAS 

    Google Scholar
     

  • Nakamura, J. et al. Aharonov–Bohm interference of fractional quantum Corridor edge modes. Nat. Phys. 15, 563–569 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Déprez, C. et al. A tunable Fabry–Pérot quantum Corridor interferometer in graphene. Nat. Nanotechnol. 16, 555–562 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronen, Y. et al. Aharonov–Bohm impact in graphene-based Fabry–Pérot quantum Corridor interferometers. Nat. Nanotechnol. 16, 563–569 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, H. et al. Aharonov–Bohm oscillations in bilayer graphene quantum Corridor edge state Fabry–Pérot interferometers. Nano Lett. 23, 718–725 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, L. et al. Graphene-based quantum Corridor interferometer with self-aligned facet gates. Nano Lett. 22, 9645–9651 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, W. et al. Proof for correlated electron pairs and triplets in quantum Corridor interferometers. Preprint at https://arxiv.org/abs/2312.14767 (2023).

  • Werkmeister, T. et al. Strongly coupled edge states in a graphene quantum Corridor interferometer. Nat. Commun. 15, 6533 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ki, D.-Okay., Fal’ko, V. I., Abanin, D. A. & Morpurgo, A. F. Remark of even denominator fractional quantum Corridor impact in suspended bilayer graphene. Nano Lett. 14, 2135–2139 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. I. A. et al. Even-denominator fractional quantum Corridor states in bilayer graphene. Science 358, 648–652 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Okay. et al. Valley isospin managed fractional quantum Corridor states in bilayer graphene. Phys. Rev. X 12, 031019 (2022).

    CAS 

    Google Scholar
     

  • Assouline, A. et al. Power hole of the even-denominator fractional quantum Corridor state in bilayer graphene. Phys. Rev. Lett. 132, 046603 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau degree. Nature 549, 360–364 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Corridor impact. Phys. Rev. Lett. 53, 722–723 (1984).

    Article 

    Google Scholar
     

  • Kivelson, S. Semiclassical concept of localized many-anyon states. Phys. Rev. Lett. 65, 3369–3372 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenow, B. & Halperin, B. I. Affect of interactions on flux and back-gate interval of quantum Corridor interferometers. Phys. Rev. Lett. 98, 106801 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Distinct signatures for Coulomb blockade and Aharonov–Bohm interference in digital Fabry–Perot interferometers. Phys. Rev. B 79, 241304 (2008).

    Article 

    Google Scholar
     

  • Camino, F. E., Zhou, W. & Goldman, V. J. e/3 Laughlin quasiparticle primary-filling ν = 1/3 interferometer. Phys. Rev. Lett. 98, 076805 (2006).

    Article 

    Google Scholar
     

  • Jain, J. Okay. Composite-fermion method for the fractional quantum Corridor impact. Phys. Rev. Lett. 63, 199–202 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laughlin, R. B. Anomalous quantum Corridor impact: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article 

    Google Scholar
     

  • Cohen, L. A. et al. Common chiral Luttinger liquid habits in a graphene fractional quantum Corridor level contact. Science 382, 542–547 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glidic, P. et al. Quasiparticle Andreev scattering within the ν = 1/3 fractional quantum Corridor regime. Nat. Commun. 14, 514 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashisaka, M. et al. Coherent–incoherent crossover of cost and impartial mode transport as proof for the disorder-dominated fractional edge section. Phys. Rev. X 13, 031024 (2023).

    CAS 

    Google Scholar
     

  • Cohen, Y. et al. Synthesizing a ν = 2/3 fractional quantum Corridor impact edge state from counter-propagating ν = 1 and ν = 1/3 states. Nat. Commun. 10, 1920 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenow, B. & Stern, A. Flux superperiods and periodicity transitions in quantum Corridor interferometers. Phys. Rev. Lett. 124, 106805 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stern, A. & Halperin, B. I. Proposed experiments to probe the non-Abelian ν = 5/2 quantum Corridor state. Phys. Rev. Lett. 96, 016802 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Jehyun, Okay. Aharonov–Bohm interference and statistical section jumps evolution in fractional quantum Corridor states in bilayer graphene. Zenodo https://doi.org/10.5281/zenodo.12509248 (2024).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *