Au-modified ceria nanozyme prevents and treats hypoxia-induced pulmonary hypertension with vastly improved enzymatic exercise and security | Journal of Nanobiotechnology

  • Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, et al. Mobile and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol. 2004;43:S13–24.

    Article 

    Google Scholar
     

  • Culley MK, Chan SY. Endothelial senescence: a brand new age in pulmonary hypertension. Circ Res. 2022;130:928–41.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Boucherat O, Agrawal V, Lawrie A, Bonnet S. The newest in animal fashions of pulmonary hypertension and proper ventricular failure. Circ Res. 2022;130:1466–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, ESC/ERS Scientific Doc Group, et al. 2022 ESC/ERS pointers for the analysis and remedy of pulmonary hypertension. Eur Coronary heart J. 2022;43:3618–731.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang J, Zhou J, Cai L, Lu Y, Wang T, Zhu L, et al. Extracellular calcium-sensing receptor is crucial in hypoxic pulmonary vasoconstriction. Antioxid Redox Sign. 2012;17:471–84.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiao R, Luo S, Zhang T, Lv Y, Wang T, Zhang J, et al. Peptide blocking self-polymerization of extracellular calcium-sensing receptor attenuates hypoxia-induced pulmonary hypertension. Hypertension. 2021;78:1605–16.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, et al. Hypoxia triggers subcellular compartmental redox signaling in vascular clean muscle cells. Circ Res. 2010;106:526–35.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Desireddi JR, Farrow KN, Marks JD, Waypa GB, Schumacker PT. Hypoxia will increase ROS signaling and cytosolic Ca2+ in pulmonary artery clean muscle cells of mouse lungs slices. Antioxid Redox Sign. 2010;12:595–602.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pak O, Scheibe S, Esfandiary A, Gierhardt M, Sydykov A, Logan A et al. Impression of the mitochondria-targeted antioxidant MitoQ on hypoxia-induced pulmonary hypertension. Eur Respir J. 2018:1701024.

  • Ahmed MN, Zhang Y, Codipilly C, Zaghloul N, Patel D, Wolin M, et al. Extracellular superoxide dismutase overexpression can reverse the course of hypoxia-induced pulmonary hypertension. Mol Med. 2012;18:38–46.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Adesina SE, Kang BY, Bijli KM, Ma J, Cheng J, Murphy TC, et al. Concentrating on mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension. Free Radic Biol Med. 2015;87:36–47.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kang Y, Zhang G, Huang EC, Huang J, Cai J, Cai L, et al. Sulforaphane prevents proper ventricular harm and reduces pulmonary vascular transforming in pulmonary arterial hypertension. Am J Physiol Coronary heart Circ Physiol. 2020;318:H853–66.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Budas GR, Boehm M, Kojonazarov B, Viswanathan G, Tian X, Veeroju S, et al. ASK1 inhibition halts illness development in preclinical fashions of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2018;197:373–85.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang R, Fan Okay, Yan X. Nanozymes: created by studying from nature. Sci China Life Sci. 2020;63:1183–200.

    Article 
    PubMed 

    Google Scholar
     

  • Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, et al. Nanomaterials with enzyme-like traits (nanozymes): next-generation synthetic enzymes (II). Chem Soc Rev. 2019;48:1004–76.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ai Y, Hu Z, Liang X, Solar H, Xin H, Liang Q. Latest advances in nanozymes: from issues to bioapplications. Adv Funct Mater. 2021;32:2110432.

    Article 

    Google Scholar
     

  • Zhang C, Wang X, Du J, Gu Z, Zhao Y. Reactive oxygen species-regulating methods based mostly on nanomaterials for illness remedy. Adv Sci. 2021;8:2002797.

    Article 
    CAS 

    Google Scholar
     

  • Chung D. Nanoparticles have well being advantages too. New Sci. 2003;179:2410–6.


    Google Scholar
     

  • Tarnuzzer RW, Colon J, Patil S, Seal S. Emptiness engineered ceria nanostructures for cover from radiation-induced mobile injury. Nano Lett. 2005;5:2573–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE. Cardioprotective results of cerium oxide nanoparticles in a transgenic murine mannequin of cardiomyopathy. Cardiovasc Res. 2007;73:549–59.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S. Cerium oxide nanoparticles: purposes and prospects in nanomedicine. Nanomed (Lond). 2013;8:1483–508.

    Article 
    CAS 

    Google Scholar
     

  • Arya A, Sethy NK, Singh SK, Das M, Bhargava Okay. Cerium oxide nanoparticles shield rodent lungs from hypobaric hypoxia-induced oxidative stress and irritation. Int J Nanomed. 2013;8:4507–20.


    Google Scholar
     

  • Gubernatorova EO, Liu X, Othman A, Muraoka WT, Koroleva EP, Andreescu S et al. Europium-doped cerium oxide nanoparticles restrict reactive oxygen species formation and ameliorate intestinal ischemia-reperfusion harm. Adv Healthc Mater. 2017;6.

  • Ni D, Wei H, Chen W, Bao Q, Rosenkrans ZT, Barnhart TE, et al. Ceria nanoparticles meet hepatic ischemia-reperfusion harm: the proper imperfection. Adv Mater. 2019;31:e1902956.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Han Z, Wang T, Ma C, Li H, Lei H, et al. Cerium oxide nanoparticles with antioxidative neurorestoration for ischemic stroke. Biomaterials. 2022;291:121904.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dong S, Dong Y, Jia T, Liu S, Liu J, Yang D, He F, Gai S, Yang P, Lin J. GSH-depleted nanozymes with hyperthermia-enhanced twin enzyme-mimic actions for tumor nanocatalytic remedy. Adv Mater. 2020;32:e2002439.

    Article 
    PubMed 

    Google Scholar
     

  • Liu J, Liu C, Tang J, Chen Q, Yu Y, Dong Y, Hao J, Wu W. Synergistic cerium oxide nanozymes: focusing on DNA injury and assuaging tumor hypoxia for improved NSCLC radiotherapy effectivity. J Nanobiotechnol. 2024;22:25.

    Article 
    CAS 

    Google Scholar
     

  • Kwon HJ, Kim D, Search engine optimisation Okay, Kim YG, Han SI, Kang T, et al. Ceria nanoparticle methods for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson’s illness. Angew Chem Int Ed Engl. 2018;57:9408–12.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li M, Shi P, Xu C, Ren J, Qu X. Cerium oxide caged metallic chelator: anti-aggregation and anti-oxidation built-in H2O2-responsive managed drug launch for potential Alzheimer’s illness remedy. Chem Sci. 2013;4:2536–42.

    Article 
    CAS 

    Google Scholar
     

  • Amin KA, Hassan MS, Awad el-ST, Hashem KS. The protecting results of cerium oxide nanoparticles in opposition to hepatic oxidative injury induced by monocrotaline. Int J Nanomed. 2011;6:143–9.

    Article 
    CAS 

    Google Scholar
     

  • Kolli MB, Manne NDPK, Para R, Nalabotu SK, Nandyala G, Shokuhfar T, et al. Cerium oxide nanoparticles attenuate monocrotaline induced proper ventricular hypertrophy following pulmonary arterial hypertension. Biomaterials. 2014;35:9951–62.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nassar SZ, Hassaan PS, Abdelmonsif DA, ElAchy SN. Cardioprotective impact of cerium oxide nanoparticles in monocrotaline rat mannequin of pulmonary hypertension: a attainable implication of endothelin-1. Life Sci. 2018;201:89–101.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Heckert EG, Karakoti AS, Seal S, Self WT. The function of cerium redox state within the SOD mimetic exercise of nanoceria. Biomaterials. 2008;29:2705–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3:1411–20.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li M, Liu J, Shi L, Zhou C, Zou M, Fu D, et al. Gold nanoparticles-embedded ceria with enhanced antioxidant actions for treating inflammatory bowel illness. Bioact Mater. 2023;25:95–106.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jian B, Yang S, Chen D, Zou L, Chatham JC, Chaudry I, et al. Growing older influences cardiac mitochondrial gene expression and cardiovascular perform following hemorrhage harm. Mol Med. 2011;17:542–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lyon AR, Joudrey PJ, Jin D, Nass RD, Aon MA, O’Rourke B, et al. Optical imaging of mitochondrial perform uncovers actively propagating waves of mitochondrial membrane potential collapse throughout intact coronary heart. J Mol Cell Cardiol. 2010;49:565–75.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li J, Music S, Lengthy Y, Wu L, Wang X, Xing Y et al. Investigating the hybrid-structure-effect of CeO2-encapsulated au nanostructures on the switch coupling of nitrobenzene. Adv Mater. 2018;30.

  • Miao Z, Jiang S, Ding M, Solar S, Ma Y, Younis MR, et al. Ultrasmall rhodium nanozyme with RONS scavenging and photothermal actions for anti-inflammation and antitumor theranostics of colon illnesses. Nano Lett. 2020;20:3079–89.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zeng X, Zhu L, Xiao R, Liu B, Solar M, Liu F, et al. Hypoxia-induced mitogenic issue acts as a nonclassical ligand of calcium-sensing receptor, therapeutically exploitable for intermittent hypoxia-induced pulmonary hypertension. Hypertension. 2017;69:844–54.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ziegelstein RC, Xiong Y, He C, Hu Q. Expression of a practical extracellular calcium-sensing receptor in human aortic endothelial cells. Biochem Biophys Res Commun. 2006;342:153–63.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu L, Liu F, Hao Q, Feng T, Chen Z, Luo S, et al. Dietary geranylgeranyl pyrophosphate counteracts the advantages of statin remedy in experimental pulmonary hypertension. Circulation. 2021;143:1775–92.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiao R, Liu J, Luo S, Yu Z, Zhang J, Lv Y, et al. Orally-administrated mitochondria attenuate pulmonary hypertension with assistance from erythrocytes as carriers. Clin Transl Med. 2022;12:e1033.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yamamura A, Guo Q, Yamamura H, Zimnicka AM, Pohl NM, Smith KA, et al. Enhanced Ca2+-sensing receptor perform in idiopathic pulmonary arterial hypertension. Circ Res. 2012;111:469–81.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Casals E, Zeng M, Parra-Robert M, Fernández-Varo G, Morales-Ruiz M, Jiménez W, et al. Cerium oxide nanoparticles: advances in biodistribution, toxicity, and preclinical exploration. Small. 2020;16:e1907322.

    Article 
    PubMed 

    Google Scholar
     

  • Yuan MJ, Li Q, Gao Y, He C, Adli M, Wu CZ, et al. Tunable structured metallic oxides for biocatalytic therapeutics. Adv Funct Mater. 2023;33(40):2304271.

    Article 
    CAS 

    Google Scholar
     

  • Sheng J, Wu Y, Ding H, Feng Okay, Shen Y, Zhang Y, et al. Multienzyme-like nanozymes: regulation, rational design, and utility. Adv Mater. 2024;36:e2211210.

    Article 
    PubMed 

    Google Scholar
     

  • Buzea C, Pacheco II, Robbie Okay. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2:MR17–71.

    Article 
    PubMed 

    Google Scholar
     

  • Win KY, Feng SS. Results of particle measurement and floor coating on mobile uptake of polymeric nanoparticles for oral supply of anticancer medication. Biomaterials. 2005;26:2713–22.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lu F, Wu SH, Hung Y, Mou CY. Dimension impact on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small. 2009;5:1408–13.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chithrani BD, Chan WC. Elucidating the mechanism of mobile uptake and elimination of protein-coated gold nanoparticles of various dimensions and shapes. Nano Lett. 2007;7:1542–50.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ding L, Yao C, Yin X, Li C, Huang Y, Wu M, et al. Dimension, form, and protein corona decide mobile uptake and elimination mechanisms of gold nanoparticles. Small. 2018;14:e1801451.

    Article 
    PubMed 

    Google Scholar
     

  • Manzanares D, Ceña V, Endocytosis. The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics. 2020;12:371.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ma JY, Zhao H, Mercer RR, Barger M, Rao M, Meighan T, et al. Cerium oxide nanoparticle-induced pulmonary irritation and alveolar macrophage practical change in rats. Nanotoxicology. 2011;5:312–25.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma J, Bishoff B, Mercer RR, Barger M, Schwegler-Berry D, Castranova V. Function of epithelial-mesenchymal transition (EMT) and fibroblast perform in cerium oxide nanoparticles-induced lung fibrosis. Toxicol Appl Pharmacol. 2017;323:16–25.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dowding JM, Das S, Kumar A, Dosani T, McCormack R, Gupta A, et al. Mobile interplay and toxicity rely upon physicochemical properties and floor modification of redox-active nanomaterials. ACS Nano. 2013;7:4855–68.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rogers S, Rice KM, Manne ND, Shokuhfar T, He Okay, Selvaraj V, et al. Cerium oxide nanoparticle aggregates have an effect on stress response and performance in Caenorhabditis elegans. SAGE Open Med. 2015;3:2050312115575387.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feliu N, Docter D, Heine M, Del Pino P, Ashraf S, Kolosnjaj-Tabi J, et al. In vivo degeneration and the destiny of inorganic nanoparticles. Chem Soc Rev. 2016;45:2440–57.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Newman SP. Aerosol deposition issues in inhalation remedy. Chest. 1985;88:S152–60.

    Article 

    Google Scholar
     

  • Johnson MA, Newman SP, Bloom R, Talaee N, Clarke SW. Supply of albuterol and ipratropium bromide from two nebulizer methods in continual steady bronchial asthma. Efficacy and pulmonary deposition. Chest. 1989;96:6–10.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mashat M, Clark BJ, Assi KH, Chrystyn H. In vitro aerodynamic characterization of the dose emitted throughout nebulization of tobramycin excessive power answer by novel and jet nebulizer supply methods. Pulm Pharmacol Ther. 2016;37:37–42.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *