Extracellular vesicles: opening up a brand new perspective for the analysis and remedy of mitochondrial dysfunction | Journal of Nanobiotechnology

  • Li Y, Ma Y, Dang QY, Fan XR, Han CT, Xu SZ, et al. Evaluation of mitochondrial dysfunction and implications in cardiovascular issues. Life Sci. 2022;306:120834.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen R, Banik B, Pathak RK, Kumar A, Kolishetti N, Dhar S. Nanotechnology impressed instruments for mitochondrial dysfunction associated ailments. Adv Drug Deliv Rev. 2016;99(Pt A):52–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fulda S, Galluzzi L, Kroemer G. Concentrating on mitochondria for most cancers remedy. Nat Rev Drug Discovery. 2010;9(6):447–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou L, Zhang J, Liu Y, Fang H, Liao L, Wang Z, et al. MitoQ alleviates LPS-mediated acute lung damage by means of regulating Nrf2/Drp1 pathway. Free Radic Biol Med. 2021;165:219–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayashida Ok, Takegawa R, Shoaib M, Aoki T, Choudhary RC, Kuschner CE, et al. Mitochondrial transplantation remedy for ischemia reperfusion damage: a scientific overview of animal and human research. J Transl Med. 2021;19(1):214.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng Y, Li S, Chen Z, Wang W, Geng B, Cai J. Mdivi-1, a mitochondrial fission inhibitor, reduces angiotensin-II- induced hypertension by mediating VSMC phenotypic change. Biomed Pharmacother. 2021;140:111689.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang T, Zhang T, Jiang X, Li A, Su Y, Bian Q, et al. Iron oxide nanoparticles increase the intercellular mitochondrial transfer-mediated remedy. Sci Adv. 2021;7(40):eabj0534.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Niel G, D’Angelo G, Raposo G. Shedding mild on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu J, Wang S, Yang D, Xu W, Qian H. Extracellular vesicles: rising roles, biomarkers and therapeutic methods in fibrotic ailments. J Nanobiotechnol. 2023;21(1):164.

    Article 

    Google Scholar
     

  • Wu P, Zhang B, Han X, Solar Y, Solar Z, Li L, et al. HucMSC exosome-delivered 14-3-3zeta alleviates ultraviolet radiation-induced photodamage by way of SIRT1 pathway modulation. Growing old. 2021;13(8):11542–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rai A, Fang H, Claridge B, Simpson RJ, Greening DW. Proteomic dissection of enormous extracellular vesicle surfaceome unravels interactive floor platform. J Extracell Vesicles. 2021;10(13):e12164.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vikramdeo KS, Anand S, Khan MA, Khushman M, Heslin MJ, Singh S, et al. Detection of mitochondrial DNA mutations in circulating mitochondria-originated extracellular vesicles for potential diagnostic purposes in pancreatic adenocarcinoma. Sci Rep. 2022;12(1):18455.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ikeda G, Santoso MR, Tada Y, Li AM, Vaskova E, Jung JH, et al. Mitochondria-Wealthy Extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J Am Coll Cardiol. 2021;77(8):1073–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu T, Zhang J, Cai J, Xiao J, Sui X, Yuan X, et al. Extracellular vesicles derived from mesenchymal stromal cells as nanotherapeutics for liver ischaemia-reperfusion damage by transferring mitochondria to modulate the formation of neutrophil extracellular traps. Biomaterials. 2022;284:121486.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen Cao TG, Kang JH, Kang SJ, Truong Hoang Q, Kang HC, Rhee WJ, et al. Mind endothelial cell-derived extracellular vesicles with a mitochondria-targeting photosensitizer successfully deal with glioblastoma by hijacking the blood–mind barrier. Acta Pharm Sin B. 2023;13(9):3834–48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen Cao TG, Truong Hoang Q, Kang JH, Kang SJ, Ravichandran V, Rhee WJ, et al. Bioreducible exosomes encapsulating glycolysis inhibitors potentiate mitochondria-targeted sonodynamic most cancers remedy by way of cancer-targeted drug launch and mobile power depletion. Biomaterials. 2023;301:122242.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ellenrieder L, Rampelt H, Becker T. Connection of Protein Transport and Organelle Contact Websites in Mitochondria. J Mol Biol. 2017;429(14):2148–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flores-Romero H, Hohorst L, John M, Albert MC, King LE, Beckmann L, et al. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J. 2022;41(2):e108690.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee SY, Kang MG, Shin S, Kwak C, Kwon T, Website positioning JK, et al. Structure Mapping of the inside mitochondrial membrane proteome by Chemical Instruments in Reside cells. J Am Chem Soc. 2017;139(10):3651–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Laan M, Horvath SE, Pfanner N. Mitochondrial contact website and cristae organizing system. Curr Opin Cell Biol. 2016;41:33–42.

    Article 
    PubMed 

    Google Scholar
     

  • Mnatsakanyan N, Jonas EA. The brand new position of F(1)F(o) ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Exp Neurol. 2020;332:113400.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuzlak S, Kaufmann T, Villunger A. Interrogating the relevance of mitochondrial apoptosis for vertebrate improvement and postnatal tissue homeostasis. Genes Dev. 2016;30(19):2133–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong RS. Apoptosis in most cancers: from pathogenesis to remedy. J Exp Clin Most cancers Res. 2011;30(1):87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell demise. Nat Rev Mol Cell Biol. 2020;21(2):85–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorstyn L, Akey CW, Kumar S. New insights into apoptosome construction and performance. Cell Loss of life Differ. 2018;25(7):1194–208.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giorgi C, Marchi S, Pinton P. The machineries, regulation and mobile features of mitochondrial calcium. Nat Rev Mol Cell Biol. 2018;19(11):713–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan M, Zhang J, Tsai CW, Orlando BJ, Rodriguez M, Xu Y, et al. Construction and mechanism of the mitochondrial ca(2+) uniporter holocomplex. Nature. 2020;582(7810):129–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naumova N, Sachl R. Regulation of cell demise by Mitochondrial Transport Techniques of Calcium and Bcl-2 proteins. Membr (Basel). 2020;10(10).

  • Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-Based mostly nanomedicine. Chem Rev. 2019;119(8):4881–985.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira LF, Laitano O. Regulation of NADPH oxidases in skeletal muscle. Free Radic Biol Med. 2016;98:18–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang J, Gao Y, Feng Z, Zhang B, Na Z, Li D. Reactive oxygen species and ovarian ailments: antioxidant methods. Redox Biol. 2023;62:102659.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirova DG, Judasova Ok, Vorhauser J, Zerjatke T, Leung JK, Glauche I, et al. A ROS-dependent mechanism promotes CDK2 phosphorylation to drive development by means of S section. Dev Cell. 2022;57(14):1712–e279.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng Ok, et al. Tom20 senses iron-activated ROS signaling to advertise melanoma cell pyroptosis. Cell Res. 2018;28(12):1171–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to practical networks. Nat Rev Mol Cell Biol. 2019;20(5):267–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nunnari J, Suomalainen A. Mitochondria: in illness and in well being. Cell. 2012;148(6):1145–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Missiroli S, Patergnani S, Caroccia N, Pedriali G, Perrone M, Previati M, et al. Mitochondria-associated membranes (MAMs) and irritation. Cell Loss of life Dis. 2018;9(3):329.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong YC, Ysselstein D, Krainc D. Mitochondria-lysosome contacts regulate mitochondrial fission by way of RAB7 GTP hydrolysis. Nature. 2018;554(7692):382–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng W, Wong YC, Krainc D. Mitochondria-lysosome contacts regulate mitochondrial ca(2+) dynamics by way of lysosomal TRPML1. Proc Natl Acad Sci U S A. 2020;117(32):19266–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordan R, Fefelova N, Gwathmey JK, Xie LH. Iron overload, oxidative stress and calcium mishandling in Cardiomyocytes: position of the mitochondrial permeability transition pore. Antioxid (Basel). 2020;9(8).

  • Shu L, Hu C, Xu M, Yu J, He H, Lin J, et al. ATAD3B is a mitophagy receptor mediating clearance of oxidative stress-induced broken mitochondrial DNA. EMBO J. 2021;40(8):e106283.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton S, Terentyeva R, Perger F, Hernandez Orengo B, Martin B, Gorr MW, et al. MCU overexpression evokes disparate dose-dependent results on mito-ROS and spontaneous ca(2+) launch in hypertrophic rat cardiomyocytes. Am J Physiol Coronary heart Circ Physiol. 2021;321(4):H615–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human well being and illness. Nat Rev Genet. 2015;16(9):530–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshinaga N, Numata Ok. Rational designs on the forefront of Mitochondria-targeted gene supply: latest progress and future views. ACS Biomater Sci Eng. 2022;8(2):348–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hahn A, Zuryn S. Mitochondrial genome (mtDNA) mutations that generate reactive oxygen species. Antioxid (Basel). 2019;8(9).

  • Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 2018;62(3):341–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wai T, Langer T. Mitochondrial dynamics and metabolic regulation. Traits Endocrinol Metab. 2016;27(2):105–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burman JL, Pickles S, Wang C, Sekine S, Vargas JNS, Zhang Z, et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J Cell Biol. 2017;216(10):3231–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo Y, Zhang H, Yan C, Shen B, Zhang Y, Guo X, et al. Small molecule agonist of mitochondrial fusion repairs mitochondrial dysfunction. Nat Chem Biol. 2023;19(4):468–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and performance. Physiol Rev. 2008;88(2):611–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang D, Cao L, Zhou X, Wang G, Ma Y, Hao X, et al. Mitigation of honokiol on fluoride-induced mitochondrial oxidative stress, mitochondrial dysfunction, and cognitive deficits by means of activating AMPK/PGC-1alpha/Sirt3. J Hazard Mater. 2022;437:129381.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Frohlich H, Torres FB, Silva RL, Poschet G, Agarwal A et al. Mitochondrial dysfunction and oxidative stress contribute to cognitive and motor impairment in FOXP1 syndrome. Proc Natl Acad Sci U S A. 2022;119(8).

  • Zhang T, Liu Q, Gao W, Sehgal SA, Wu H. The multifaceted regulation of mitophagy by endogenous metabolites. Autophagy. 2022;18(6):1216–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuda N, Sato S, Shiba Ok, Okatsu Ok, Saisho Ok, Gautier CA, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to broken mitochondria and prompts latent Parkin for mitophagy. J Cell Biol. 2010;189(2):211–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Dai L, Li D. Mitophagy in neurological issues. J Neuroinflammation. 2021;18(1):297.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swerdlow RH. Mitochondria and mitochondrial cascades in Alzheimer’s Illness. J Alzheimers Dis. 2018;62(3):1403–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai Q, Tammineni P. Mitochondrial features of synaptic dysfunction in Alzheimer’s Illness. J Alzheimers Dis. 2017;57(4):1087–103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Music Q, Yu R, Wang A, Jiang G, Huang Y, et al. Nano-Brake halts mitochondrial dysfunction Cascade to Alleviate Neuropathology and Rescue Alzheimer’s cognitive deficits. Adv Sci (Weinh). 2023;10(7):e2204596.

    Article 
    PubMed 

    Google Scholar
     

  • Xie W, Guo D, Li J, Yue L, Kang Q, Chen G, et al. CEND1 deficiency induces mitochondrial dysfunction and cognitive impairment in Alzheimer’s illness. Cell Loss of life Differ. 2022;29(12):2417–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flones IH, Fernandez-Vizarra E, Lykouri M, Brakedal B, Skeie GO, Miletic H, et al. Neuronal complicated I deficiency happens all through the Parkinson’s illness mind, however isn’t related to neurodegeneration or mitochondrial DNA injury. Acta Neuropathol. 2018;135(3):409–25.

    Article 
    PubMed 

    Google Scholar
     

  • Gonzalez-Rodriguez P, Zampese E, Stout KA, Guzman JN, Ilijic E, Yang B, et al. Disruption of mitochondrial complicated I induces progressive parkinsonism. Nature. 2021;599(7886):650–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s illness. Cell. 2011;144(5):689–702.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng W, Schroder LF, Music P, Wong YC, Krainc D. Parkin regulates amino acid homeostasis at mitochondria-lysosome (M/L) contact websites in Parkinson’s illness. Sci Adv. 2023;9(29):eadh3347.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee KS, Huh S, Lee S, Wu Z, Kim AK, Kang HY, et al. Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in illness fashions. Proc Natl Acad Sci U S A. 2018;115(38):E8844–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi B, Music L, Hu L, Guo D, Ren G, Peng T, et al. Cardiac-specific overexpression of Ndufs1 ameliorates cardiac dysfunction after myocardial infarction by assuaging mitochondrial dysfunction and apoptosis. Exp Mol Med. 2022;54(7):946–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Z, Lei C, Liu H, Jiang M, Zhou Z, Zhao Y, et al. A ROS-Responsive liposomal composite hydrogel integrating improved mitochondrial perform and pro-angiogenesis for environment friendly remedy of myocardial infarction. Adv Healthc Mater. 2022;11(19):e2200990.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang CX, Cheng Y, Liu DZ, Liu M, Cui H, Zhang BL, et al. Mitochondria-targeted cyclosporin A supply system to deal with myocardial ischemia reperfusion damage of rats. J Nanobiotechnol. 2019;17(1):18.

    Article 

    Google Scholar
     

  • Li Y, Chen B, Yang X, Zhang C, Jiao Y, Li P, et al. S100a8/a9 signaling causes mitochondrial dysfunction and Cardiomyocyte Loss of life in response to Ischemic/Reperfusion Harm. Circulation. 2019;140(9):751–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bassiouni W, Valencia R, Mahmud Z, Seubert JM, Schulz R. Matrix metalloproteinase-2 proteolyzes mitofusin-2 and impairs mitochondrial perform throughout myocardial ischemia-reperfusion damage. Primary Res Cardiol. 2023;118(1):29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maneechote C, Palee S, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. Differential temporal inhibition of mitochondrial fission by Mdivi-1 exerts efficient cardioprotection in cardiac ischemia/reperfusion damage. Clin Sci (Lond). 2018;132(15):1669–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo Y, Ma J, Lu W. The importance of mitochondrial dysfunction in Most cancers. Int J Mol Sci. 2020;21(16).

  • Gill AJ. Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology. 2018;72(1):106–16.

    Article 
    PubMed 

    Google Scholar
     

  • Yuan T, Zhou T, Qian M, Du J, Liu Y, Wang J, et al. SDHA/B discount promotes hepatocellular carcinoma by facilitating the deNEDDylation of cullin1 and stabilizing YAP/TAZ. Hepatology. 2023;78(1):103–19.

    Article 
    PubMed 

    Google Scholar
     

  • Ooi A. Advances in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) analysis. Semin Most cancers Biol. 2020;61:158–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sciacovelli M, Goncalves E, Johnson TI, Zecchini VR, da Costa AS, Gaude E, et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature. 2016;537(7621):544–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge X, Li M, Yin J, Shi Z, Fu Y, Zhao N, et al. Fumarate inhibits PTEN to advertise tumorigenesis and therapeutic resistance of type2 papillary renal cell carcinoma. Mol Cell. 2022;82(7):1249–60. e7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kopinski PK, Singh LN, Zhang S, Lott MT, Wallace DC. Mitochondrial DNA variation and most cancers. Nat Rev Most cancers. 2021;21(7):431–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith AL, Whitehall JC, Bradshaw C, Homosexual D, Robertson F, Blain AP, et al. Age-associated mitochondrial DNA mutations trigger metabolic remodelling that contributes to accelerated intestinal tumorigenesis. Nat Most cancers. 2020;1(10):976–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizumura Ok, Cloonan SM, Nakahira Ok, Bhashyam AR, Cervo M, Kitada T, et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Make investments. 2014;124(9):3987–4003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Araya J, Tsubouchi Ok, Sato N, Ito S, Minagawa S, Hara H, et al. PRKN-regulated mitophagy and mobile senescence throughout COPD pathogenesis. Autophagy. 2019;15(3):510–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cloonan SM, Glass Ok, Laucho-Contreras ME, Bhashyam AR, Cervo M, Pabon MA, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med. 2016;22(2):163–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cen M, Ouyang W, Zhang W, Yang L, Lin X, Dai M, et al. MitoQ protects towards hyperpermeability of endothelium barrier in acute lung damage by way of a Nrf2-dependent mechanism. Redox Biol. 2021;41:101936.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He B, Yu H, Liu S, Wan H, Fu S, Liu S, et al. Mitochondrial cristae structure protects towards mtDNA launch and irritation. Cell Rep. 2022;41(10):111774.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coughlan MT, Nguyen TV, Penfold SA, Higgins GC, Thallas-Bonke V, Tan SM, et al. Mapping time-course mitochondrial diversifications within the kidney in experimental diabetes. Clin Sci (Lond). 2016;130(9):711–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai M, Wu M, Jiang M, He J, Deng X, Xu S, et al. LONP1 targets HMGCS2 to guard mitochondrial perform and attenuate persistent kidney illness. EMBO Mol Med. 2023;15(2):e16581.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin C, Wu P, Li L, Xu W, Qian H. Exosomes: rising remedy supply instruments and biomarkers for kidney ailments. Stem Cells Int. 2021;2021:7844455.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang C, Cai J, Yin XM, Weinberg JM, Venkatachalam MA, Dong Z. Mitochondrial high quality management in kidney damage and restore. Nat Rev Nephrol. 2021;17(5):299–318.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, et al. Mitochondrial ROS promote mitochondrial dysfunction and irritation in ischemic acute kidney damage by disrupting TFAM-mediated mtDNA upkeep. Theranostics. 2021;11(4):1845–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maekawa H, Inoue T, Ouchi H, Jao TM, Inoue R, Nishi H, et al. Mitochondrial injury causes irritation by way of cGAS-STING signaling in Acute kidney Harm. Cell Rep. 2019;29(5):1261–e736.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Q, Ren J, Wu J, Li G, Wu X, Liu S, et al. Urinary mitochondrial DNA ranges establish acute kidney Harm in Surgical essential sickness sufferers. Shock. 2017;48(1):11–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li R, Dai Z, Liu X, Wang C, Huang J, Xin T, et al. Interplay between twin specificity phosphatase-1 and cullin-1 attenuates alcohol-related liver illness by restoring p62-mediated mitophagy. Int J Biol Sci. 2023;19(6):1831–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu X, Xuan W, Li J, Yao H, Huang C, Li J. AMPK protects towards alcohol-induced liver damage by means of UQCRC2 to up-regulate mitophagy. Autophagy. 2021;17(11):3622–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdelhamid AM, Elsheakh AR, Abdelaziz RR, Suddek GM. Empagliflozin ameliorates ethanol-induced liver damage by modulating NF-kappaB/Nrf-2/PPAR-gamma interaction in mice. Life Sci. 2020;256:117908.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Wu R, Wang X, Bao X, Lu C. Roles of necroptosis in alcoholic liver illness and hepatic pathogenesis. Cell Prolif. 2022;55(3):e13193.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma X, Chen A, Melo L, Clemente-Sanchez A, Chao X, Ahmadi AR, et al. Lack of hepatic DRP1 exacerbates alcoholic hepatitis by inducing megamitochondria and mitochondrial maladaptation. Hepatology. 2023;77(1):159–75.

    Article 
    PubMed 

    Google Scholar
     

  • Younossi ZM, Marchesini G, Pinto-Cortez H, Petta S. Epidemiology of nonalcoholic fatty liver illness and nonalcoholic steatohepatitis: implications for liver transplantation. Transplantation. 2019;103(1):22–7.

    Article 
    PubMed 

    Google Scholar
     

  • Ramanathan R, Ali AH, Ibdah JA. Mitochondrial dysfunction performs central position in nonalcoholic fatty liver illness. Int J Mol Sci. 2022;23(13).

  • Wan J, Wu X, Chen H, Xia X, Music X, Chen S, et al. Growing old-induced aberrant RAGE/PPARalpha axis promotes hepatic steatosis by way of dysfunctional mitochondrial beta oxidation. Growing old Cell. 2020;19(10):e13238.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Ishihara T, Ibayashi Y, Tatsushima Ok, Setoyama D, Hanada Y, et al. Disruption of mitochondrial fission within the liver protects mice from diet-induced weight problems and metabolic deterioration. Diabetologia. 2015;58(10):2371–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: rising complexities. Traits Cell Biol. 2023;33(8):667–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal data for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the Worldwide Society for Extracellular Vesicles and replace of the MISEV2014 tips. J Extracell Vesicles. 2018;7(1):1535750.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal data for research of extracellular vesicles (MISEV2023): from fundamental to superior approaches. J Extracell Vesicles. 2024;13(2):e12404.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van de Wakker SI, Meijers FM, Sluijter JPG, Vader P. Extracellular vesicle heterogeneity and its affect for Regenerative Medication Functions. Pharmacol Rev. 2023;75(5):1043–61.

    Article 
    PubMed 

    Google Scholar
     

  • Dyball LE, Smales CM. Exosomes: Biogenesis, focusing on, characterization and their potential as Plug & Play vaccine platforms. Biotechnol J. 2022;17(11):e2100646.

    Article 
    PubMed 

    Google Scholar
     

  • Ashoub MH, Salavatipour MS, Kasgari FH, Valandani HM, Khalilabadi RM. Extracellular microvesicles: biologic properties, biogenesis, and purposes in leukemia. Mol Cell Biochem. 2024;479(2):419–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, perform, and biomedical purposes of exosomes. Science. 2020;367(6478).

  • Gustafson D, Veitch S, Fish JE. Extracellular vesicles as protagonists of Diabetic Cardiovascular Pathology. Entrance Cardiovasc Med. 2017;4:71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deus CM, Tavares H, Beatriz M, Mota S, Lopes C. Mitochondrial damage-Related molecular patterns content material in Extracellular vesicles promotes early irritation in neurodegenerative issues. Cells. 2022;11:15.

    Article 

    Google Scholar
     

  • Choong CJ, Okuno T, Ikenaka Ok, Baba Ok, Hayakawa H, Koike M, et al. Different mitochondrial high quality management mediated by extracellular launch. Autophagy. 2021;17(10):2962–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA. Parkin and PINK1 perform in a vesicular trafficking pathway regulating mitochondrial high quality management. EMBO J. 2014;33(4):282–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sugiura A, McLelland GL, Fon EA, McBride HM. A brand new pathway for mitochondrial high quality management: mitochondrial-derived vesicles. EMBO J. 2014;33(19):2142–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braschi E, Goyon V, Zunino R, Mohanty A, Xu L, McBride HM. Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr Biol. 2010;20(14):1310–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberts RF, Fon EA. Presenting mitochondrial antigens: PINK1, Parkin and MDVs steal the present. Cell Res. 2016;26(11):1180–1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C, Chemali M, et al. Parkinson’s Illness-related proteins PINK1 and Parkin Repress Mitochondrial Antigen Presentation. Cell. 2016;166(2):314–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soubannier V, Rippstein P, Kaufman BA, Shoubridge EA, McBride HM. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS ONE. 2012;7(12):e52830.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts RF, Bayne AN, Goiran T, Levesque D, Boisvert FM, Trempe JF, et al. Proteomic profiling of mitochondrial-derived vesicles in Mind reveals Enrichment of Respiratory Complicated sub-assemblies and small TIM chaperones. J Proteome Res. 2021;20(1):506–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohanty A, Zunino R, Soubannier V, Dilipkumar S. A brand new practical position of mitochondria-anchored protein ligase in peroxisome morphology in mammalian cells. J Cell Biochem. 2021;122(11):1686–700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abuaita BH, Schultz TL, O’Riordan MX. Mitochondria-Derived vesicles ship antimicrobial reactive oxygen species to Management Phagosome-localized Staphylococcus aureus. Cell Host Microbe. 2018;24(5):625–36. e5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee Y, Ni J, Beretov J, Wasinger VC, Graham P, Li Y. Latest advances of small extracellular vesicle biomarkers in breast most cancers analysis and prognosis. Mol Most cancers. 2023;22(1):33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dave KM, Stolz DB, Venna VR, Quaicoe VA, Maniskas ME, Reynolds MJ, et al. Mitochondria-containing extracellular vesicles (EV) cut back mouse mind infarct sizes and EV/HSP27 defend ischemic mind endothelial cultures. J Management Launch. 2023;354:368–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dozio V, Sanchez JC. Characterisation of extracellular vesicle-subsets derived from mind endothelial cells and evaluation of their protein cargo modulation after TNF publicity. J Extracell Vesicles. 2017;6(1):1302705.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strillacci A, et al. Packaging and switch of mitochondrial DNA by way of exosomes regulate escape from dormancy in hormonal therapy-resistant breast most cancers. Proc Natl Acad Sci U S A. 2017;114(43):E9066–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lou P, Liu S, Xu X, Pan C, Lu Y, Liu J. Extracellular vesicle-based therapeutics for the regeneration of persistent wounds: present data and future views. Acta Biomater. 2021;119:42–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sidhom Ok, Obi PO, Saleem A. A overview of Exosomal isolation strategies: is dimension Exclusion Chromatography the most suitable choice? Int J Mol Sci. 2020;21:18.

    Article 

    Google Scholar
     

  • D’Acunzo P, Kim Y, Ungania JM, Perez-Gonzalez R, Goulbourne CN, Levy E. Isolation of mitochondria-derived mitovesicles and subpopulations of microvesicles and exosomes from mind tissues. Nat Protoc. 2022;17(11):2517–49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen A, Turko IV. Isolation protocols and mitochondrial content material for plasma extracellular vesicles. Anal Bioanal Chem. 2023;415(7):1299–304.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crescitelli R, Lasser C, Lotvall J. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc. 2021;16(3):1548–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai JJ, Chau ZL, Chen SY, Hill JJ, Korpany KV, Liang NW, et al. Exosome Processing and characterization approaches for Analysis and Expertise Growth. Adv Sci (Weinh). 2022;9(15):e2103222.

    Article 
    PubMed 

    Google Scholar
     

  • van der Pol E, Coumans FA, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, et al. Particle dimension distribution of exosomes and microvesicles decided by transmission electron microscopy, circulate cytometry, nanoparticle monitoring evaluation, and resistive pulse sensing. J Thromb Haemost. 2014;12(7):1182–92.

    Article 
    PubMed 

    Google Scholar
     

  • Arraud N, Gounou C, Linares R, Brisson AR. A easy circulate cytometry methodology improves the detection of phosphatidylserine-exposing extracellular vesicles. J Thromb Haemost. 2015;13(2):237–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Vlist EJ, Nolte-‘t Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH. Fluorescent labeling of nano-sized vesicles launched by cells and subsequent quantitative and qualitative evaluation by high-resolution circulate cytometry. Nat Protoc. 2012;7(7):1311–26.

    Article 
    PubMed 

    Google Scholar
     

  • Groot Kormelink T, Arkesteijn GJ, Nauwelaers FA, van den Engh G, Nolte-‘t Hoen EN, Wauben MH. Conditions for the evaluation and sorting of extracellular vesicle subpopulations by high-resolution circulate cytometry. Cytometry A. 2016;89(2):135–47.

    Article 
    PubMed 

    Google Scholar
     

  • Stoner SA, Duggan E, Condello D, Guerrero A, Turk JR, Narayanan PK, et al. Excessive sensitivity circulate cytometry of membrane vesicles. Cytometry A. 2016;89(2):196–206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu S, Ma L, Wang S, Chen C, Zhang W, Yang L, et al. Mild-scattering detection beneath the extent of single fluorescent molecules for high-resolution characterization of practical nanoparticles. ACS Nano. 2014;8(10):10998–1006.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Hsueh MF, Huebner JL, Kraus VB. TNF-alpha carried by plasma extracellular vesicles predicts knee osteoarthritis development. Entrance Immunol. 2021;12:758386.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Hubal MJ, Kraus VB. Immune cell extracellular vesicles and their mitochondrial content material decline with ageing. Immun Ageing. 2020;17:1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao M, Liu S, Wang C, Wang Y, Wan M, Liu F, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial injury and irritation by stabilizing mitochondrial DNA. ACS Nano. 2021;15(1):1519–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas MA, Fahey MJ, Pugliese BR, Irwin RM, Antonyak MA, Delco ML. Human mesenchymal stromal cells launch practical mitochondria in extracellular vesicles. Entrance Bioeng Biotechnol. 2022;10:870193.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peruzzotti-Jametti L, Bernstock JD, Willis CM, Manferrari G, Rogall R, Fernandez-Vizarra E, et al. Neural stem cells site visitors practical mitochondria by way of extracellular vesicles. PLoS Biol. 2021;19(4):e3001166.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manickam DS. Supply of mitochondria by way of extracellular vesicles – a brand new horizon in drug supply. J Managed Launch. 2022;343:400–7.

    Article 
    CAS 

    Google Scholar
     

  • Yao PJ, Eren E, Goetzl EJ, Kapogiannis D. Mitochondrial Electron Transport Chain Protein Abnormalities Detected in Plasma Extracellular Vesicles in Alzheimer’s Illness. Biomedicines. 2021;9(11).

  • Kim KM, Meng Q, Perez de Acha O, Mustapic M, Cheng A, Eren E et al. Mitochondrial RNA in Alzheimer’s Illness circulating Extracellular vesicles. Entrance Cell Dev Biology. 2020;8.

  • D’Acunzo P, Perez-Gonzalez R, Kim Y, Hargash T, Miller C, Alldred MJ et al. Mitovesicles are a novel inhabitants of extracellular vesicles of mitochondrial origin altered in Down syndrome. Sci Adv. 2021;7(7).

  • Ladakis DC, Yao PJ, Vreones M, Blommer J, Kalaitzidis G, Sotirchos ES, et al. Mitochondrial measures in neuronally enriched extracellular vesicles predict mind and retinal atrophy in a number of sclerosis. A number of Scler J. 2022;28(13):2020–6.

    Article 

    Google Scholar
     

  • Holvoet P, Vanhaverbeke M, Bloch Ok, Baatsen P, Sinnaeve P, Janssens S. Low MT-CO1 in Monocytes and Microvesicles is Related to Final result in sufferers with coronary artery illness. J Am Coronary heart Assoc. 2016;5(12).

  • Keseru JS, Soltesz B, Lukacs J, Marton E, Szilagyi-Bonizs M, Penyige A, et al. Detection of cell-free, exosomal and entire blood mitochondrial DNA copy quantity in plasma or entire blood of sufferers with serous epithelial ovarian most cancers. J Biotechnol. 2019;298:76–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jang SC, Crescitelli R, Cvjetkovic A, Belgrano V, Olofsson Bagge R, Sundfeldt Ok, et al. Mitochondrial protein enriched extracellular vesicles found in human melanoma tissues may be detected in affected person plasma. J Extracell Vesicles. 2019;8(1):1635420.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng AN, Cheng L-C, Kuo C-L, Lo YK, Chou H-Y, Chen C-H et al. Mitochondrial lon-induced mtDNA leakage contributes to PD-L1–mediated immunoescape by way of STING-IFN signaling and extracellular vesicles. J Immunother Most cancers. 2020;8(2).

  • Vikramdeo KS, Anand S, Khan MA, Khushman Md, Heslin MJ, Singh S et al. Detection of mitochondrial DNA mutations in circulating mitochondria-originated extracellular vesicles for potential diagnostic purposes in pancreatic adenocarcinoma. Sci Rep. 2022;12(1).

  • Rasuleva Ok, Jangili KP, Akinlalu A, Guo A, Borowicz P, Li C-z, et al. EvIPqPCR, Goal circulating Tumorous Extracellular vesicles for detection of pancreatic Most cancers. Anal Chem. 2023;95(27):10353–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Letsiou E, Teixeira Alves LG, Fatykhova D, Felten M, Mitchell TJ, Müller-Redetzky HC et al. Microvesicles launched from pneumolysin-stimulated lung epithelial cells carry mitochondrial cargo and suppress neutrophil oxidative burst. Sci Rep. 2021;11(1).

  • Ma J, Cao H, Rodrigues RM, Xu M, Ren T, He Y et al. Persistent-plus-binge alcohol consumption induces manufacturing of proinflammatory mtDNA-enriched extracellular vesicles and steatohepatitis by way of ASK1/p38MAPKalpha-dependent mechanisms. JCI Perception. 2020;5(14).

  • Lee JH, Shim YR, Website positioning W, Kim MH, Choi WM, Kim HH, et al. Mitochondrial double-stranded RNA in Exosome promotes Interleukin-17 manufacturing by means of toll-like receptor 3 in Alcohol-associated Liver Harm. Hepatology. 2020;72(2):609–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li YJ, Liu RP, Ding MN, Zheng Q, Wu JZ, Xue XY, et al. Tetramethylpyrazine prevents liver fibrotic damage in mice by focusing on hepatocyte-derived and mitochondrial DNA-enriched extracellular vesicles. Acta Pharmacol Sin. 2022;43(8):2026–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng L, Wang Y, Qiu P, Xia C, Fang Y, Mei S, et al. Major chondrocyte exosomes mediate osteoarthritis development by regulating mitochondrion and immune reactivity. Nanomed (Lond). 2019;14(24):3193–212.

    Article 
    CAS 

    Google Scholar
     

  • Picca A, Beli R, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R et al. Older adults with bodily Frailty and Sarcopenia Present elevated ranges of circulating small Extracellular vesicles with a selected mitochondrial signature. Cells. 2020;9(4).

  • Lazo S, Noren Hooten N, Inexperienced J, Eitan E, Mode NA, Liu QR, et al. Mitochondrial DNA in extracellular vesicles declines with age. Growing old Cell. 2021;20(1):e13283.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rehman FU, Liu Y, Zheng M, Shi B. Exosomes based mostly methods for mind drug supply. Biomaterials. 2023;293:121949.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, et al. Elucidation of Exosome Migration throughout the blood-brain barrier mannequin in Vitro. Cell Mol Bioeng. 2016;9(4):509–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Souza A, Burch A, Dave KM, Sreeram A, Reynolds MJ, Dobbins DX, et al. Microvesicles switch mitochondria and enhance mitochondrial perform in mind endothelial cells. J Management Launch. 2021;338:505–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leggio L, L’Episcopo F, Magri A, Ulloa-Navas MJ, Paterno G, Vivarelli S, et al. Small extracellular vesicles secreted by Nigrostriatal Astrocytes Rescue Cell Loss of life and protect mitochondrial perform in Parkinson’s Illness. Adv Healthc Mater. 2022;11(20):e2201203.

    Article 
    PubMed 

    Google Scholar
     

  • Calabria E, Scambi I, Bonafede R, Schiaffino L, Peroni D, Potrich V, et al. ASCs-Exosomes get better Coupling Effectivity and mitochondrial membrane potential in an in vitro mannequin of ALS. Entrance NeuroSci. 2019;13:1070.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee M, Ban JJ, Kim KY, Jeon GS, Im W, Sung JJ, et al. Adipose-derived stem cell exosomes alleviate pathology of amyotrophic lateral sclerosis in vitro. Biochem Biophys Res Commun. 2016;479(3):434–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonafede R, Brandi J, Manfredi M, Scambi I, Schiaffino L, Merigo F et al. The anti-apoptotic impact of ASC-Exosomes in an in vitro ALS Mannequin and their proteomic evaluation. Cells. 2019;8(9).

  • Lee M, Liu T, Im W, Kim M. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s illness in vitro mannequin. Eur J Neurosci. 2016;44(4):2114–9.

    Article 
    PubMed 

    Google Scholar
     

  • Lu Y, Zhang J, Han B, Yu Y, Zhao W, Wu T, et al. Extracellular vesicles DJ-1 derived from hypoxia-conditioned hMSCs alleviate cardiac hypertrophy by suppressing mitochondria dysfunction and stopping ATRAP degradation. Pharmacol Res. 2023;187:106607.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Li X, Zhu W, Zhang Y, Hong Y, Liang X, et al. Exosomes from mesenchymal stem cells overexpressing MIF improve myocardial restore. J Cell Physiol. 2020;235(11):8010–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao F, Solar L, Yang N, Zheng W, Shen P, Huang Y, et al. Elevated launch of microvesicles containing mitochondria is related to the myeloid differentiation of AML-M5 leukaemia cells. Exp Cell Res. 2020;395(2):112213.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abad E, Lyakhovich A. Motion of Mitochondria with Mutant DNA by means of Extracellular vesicles helps Most cancers cells purchase Chemoresistance. ChemMedChem. 2022;17(4):e202100642.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salaud C, Alvarez-Arenas A, Geraldo F, Belmonte-Beitia J, Calvo GF, Gratas C, et al. Mitochondria switch from tumor-activated stromal cells (TASC) to main Glioblastoma cells. Biochem Biophys Res Commun. 2020;533(1):139–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rabas N, Palmer S, Mitchell L, Ismail S, Gohlke A, Riley JS et al. PINK1 drives manufacturing of mtDNA-containing extracellular vesicles to advertise invasiveness. J Cell Biol. 2021;220(12).

  • Jiao Y, Tang Y, Li Y, Liu C, He J, Zhang LK, et al. Tumor cell-derived extracellular vesicles for breast most cancers particular supply of therapeutic P53. J Management Launch. 2022;349:606–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vakhshiteh F, Rahmani S, Ostad SN, Madjd Z, Dinarvand R, Atyabi F. Exosomes derived from miR-34a-overexpressing mesenchymal stem cells inhibit in vitro tumor development: a brand new method for drug supply. Life Sci. 2021;266:118871.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu H, Liao C, Liang S, Ye BC. A novel peptide-equipped exosomes platform for supply of antisense oligonucleotides. ACS Appl Mater Interfaces. 2021;13(9):10760–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abad E, Lyakhovich A. Motion of Mitochondria with Mutant DNA by means of Extracellular vesicles helps Most cancers cells purchase Chemoresistance. ChemMedChem. 2021;17(4).

  • Kang C, Ren X, Lee D, Ramesh R, Nimmo S, Yang-Hartwich Y, et al. Harnessing small extracellular vesicles for pro-oxidant supply: novel method for drug-sensitive and resistant most cancers remedy. J Managed Launch. 2024;365:286–300.

    Article 
    CAS 

    Google Scholar
     

  • Nguyen Cao TG, Kang JH, Kang SJ, Truong Hoang Q, Kang HC, Rhee WJ, et al. Mind endothelial cell-derived extracellular vesicles with a mitochondria-targeting photosensitizer successfully deal with glioblastoma by hijacking the blood–mind barrier. Acta Pharm Sinica B. 2023;13(9):3834–48.

    Article 

    Google Scholar
     

  • Cao H, Gao H, Wang L, Cheng Y, Wu X, Shen X, et al. Biosynthetic Dendritic Cell-Exocytosed Aggregation-Induced Emission nanoparticles for synergistic photodynamic immunotherapy. ACS Nano. 2022;16(9):13992–4006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O’Kane CM, et al. Mesenchymal stromal cells modulate macrophages in clinically related Lung Harm fashions by Extracellular Vesicle mitochondrial switch. Am J Respir Crit Care Med. 2017;196(10):1275–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia L, Zhang C, Lv N, Liang Z, Ma T, Cheng H, et al. AdMSC-derived exosomes alleviate acute lung damage by way of transferring mitochondrial element to enhance homeostasis of alveolar macrophages. Theranostics. 2022;12(6):2928–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antunes MA, Braga CL, Oliveira TB, Kitoko JZ, Castro LL, Xisto DG, et al. Mesenchymal stromal cells from Emphysematous donors and their extracellular vesicles are unable to reverse cardiorespiratory dysfunction in experimental extreme Emphysema. Entrance Cell Dev Biol. 2021;9:661385.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Islam MN, Das SR, Emin MT, Wei M, Solar L, Westphalen Ok, et al. Mitochondrial switch from bone-marrow-derived stromal cells to pulmonary alveoli protects towards acute lung damage. Nat Med. 2012;18(5):759–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutra Silva J, Su Y, Calfee CS, Delucchi KL, Weiss D, McAuley DF et al. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and enhance barrier integrity in clinically related fashions of ARDS. Eur Respir J. 2021;58(1).

  • Bhargava P, Schnellmann RG. Mitochondrial energetics within the kidney. Nat Rev Nephrol. 2017;13(10):629–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collino F, Lopes JA, Tapparo M, Tortelote GG, Kasai-Brunswick TH, Lopes GMC et al. Extracellular vesicles derived from Induced Pluripotent stem cells promote renoprotection in Acute kidney Harm Mannequin. Cells. 2020;9(2).

  • Lopes JA, Collino F, Rodrigues-Ferreira C, Sampaio LDS, Costa-Sarmento G, Wendt CHC et al. Early results of Extracellular vesicles secreted by adipose tissue mesenchymal cells in renal ischemia adopted by reperfusion: mechanisms depend on a lower in mitochondrial anion superoxide manufacturing. Int J Mol Sci. 2022;23(6).

  • Gao Z, Zhang C, Peng F, Chen Q, Zhao Y, Chen L, et al. Hypoxic mesenchymal stem cell-derived extracellular vesicles ameliorate renal fibrosis after ischemia-reperfusion injure by restoring CPT1A mediated fatty acid oxidation. Stem Cell Res Ther. 2022;13(1):191.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou X, Kwon SH, Jiang Ok, Ferguson CM, Puranik AS, Zhu X, et al. Renal scattered tubular-like cells confer protecting results within the stenotic murine kidney mediated by launch of extracellular vesicles. Sci Rep. 2018;8(1):1263.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar Z, Gao Z, Wu J, Zheng X, Jing S, Wang W. MSC-Derived Extracellular vesicles Activate Mitophagy to Alleviate Renal Ischemia/Reperfusion Harm by way of the miR-223-3p/NLRP3 Axis. Stem Cells Int. 2022;2022:6852661.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu D, Zou X, Ju G, Zhang G, Bao E, Zhu Y. Mesenchymal stromal cells derived extracellular vesicles ameliorate Acute Renal Ischemia Reperfusion Harm by Inhibition of mitochondrial fission by means of miR-30. Stem Cells Int. 2016;2016:2093940.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang TT, Wang B, Wu M, Li ZL, Feng Y, Cao JY, et al. Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics towards ischemic AKI. Sci Adv. 2020;6(33):eaaz0748.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang H, Tohme S, Al-Khafaji AB, Tai S, Loughran P, Chen L, et al. Harm-associated molecular pattern-activated neutrophil extracellular lure exacerbates sterile inflammatory liver damage. Hepatology. 2015;62(2):600–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived Extracellular vesicles: towards cell-free therapeutic purposes. Mol Remedy: J Am Soc Gene Remedy. 2015;23(5):812–23.

    Article 
    CAS 

    Google Scholar
     

  • Ni S, Yi N, Yuan H, Li D, Chen X, Zhuang C. Angelica Sinensis polysaccharide improves mitochondrial metabolism of osteoarthritis chondrocytes by means of PPARgamma/SOD2/ROS pathways. Phytother Res. 2023.

  • Yu M, Wang D, Chen X, Zhong D, Luo J. BMSCs-derived Mitochondria Enhance Osteoarthritis by ameliorating mitochondrial dysfunction and selling mitochondrial Biogenesis in Chondrocytes. Stem Cell Rev Rep. 2022;18(8):3092–111.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao W, Xing H, Cao S, Lengthy X, Liu H, Ma J, et al. Neutrophils restrain sepsis related coagulopathy by way of extracellular vesicles carrying superoxide dismutase 2 in a murine mannequin of lipopolysaccharide induced sepsis. Nat Commun. 2022;13(1):4583.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Zheng Z, Zhu X, Meng M, Li L, Shen Y, et al. Brown adipose tissue transplantation improves whole-body power metabolism. Cell Res. 2013;23(6):851–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou X, Li Z, Qi M, Zhao P, Duan Y, Yang G, et al. Brown adipose tissue-derived exosomes mitigate the metabolic syndrome in excessive fats weight loss program mice. Theranostics. 2020;10(18):8197–210.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *