A structured biomimetic nanoparticle as inflammatory issue sponge and autophagy-regulatory agent in opposition to intervertebral disc degeneration and discogenic ache | Journal of Nanobiotechnology

  • GBD 2017 Illness and Damage Incidence and Prevalence Collaborators, World, Regional, Incidence N. Prevalence, and years lived with incapacity for 354 illnesses and accidents for 195 nations and territories, 1990–2017: a scientific evaluation for the worldwide burden of Illness Examine 2017. Lancet. 2018;392(10159):1789–858. https://doi.org/10.1016/S0140-6736(18)32279-7.

    Article 

    Google Scholar
     

  • Ohtori S, Inoue G, Miyagi M, Takahashi Okay. Pathomechanisms of Discogenic Low Again Ache in people and animal fashions. Backbone J. 2015;15(6):1347–55. https://doi.org/10.1016/j.spinee.2013.07.490.

    Article 
    PubMed 

    Google Scholar
     

  • Brinjikji W, Diehn FE, Jarvik JG, Carr CM, Kallmes DF, Murad MH, Luetmer PH. MRI findings of Disc Degeneration are extra prevalent in adults with low again Ache than in asymptomatic controls: a scientific overview and Meta-analysis. AJNR Am J Neuroradiol. 2015;36(12):2394–9. https://doi.org/10.3174/ajnr.A4498.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorth DJ, Shapiro IM, Risbud MV. Transgenic mice overexpressing human TNF-α expertise early onset spontaneous intervertebral disc herniation within the absence of overt degeneration. Cell Demise Dis. 2018;10(1):7. https://doi.org/10.1038/s41419-018-1246-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson ZI, Doolittle AC, Snuggs JW, Shapiro IM, Le Maitre CL, Risbud MV. TNF-α promotes Nuclear Enrichment of the transcription issue TonEBP/NFAT5 to selectively management inflammatory however not osmoregulatory responses in Nucleus Pulposus cells. J Biol Chem. 2017;292(42):17561–75. https://doi.org/10.1074/jbc.M117.790378.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchand F, Perretti M, McMahon SB. Position of the Immune System in Persistent Ache. Nat Rev Neurosci. 2005;6(7):521–32. https://doi.org/10.1038/nrn1700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakazawa KR, Walter BA, Laudier DM, Krishnamoorthy D, Mosley GE, Spiller KL, Iatridis JC. Accumulation and localization of macrophage phenotypes with human intervertebral disc degeneration. Backbone J. 2018;18(2):343–56. https://doi.org/10.1016/j.spinee.2017.09.018.

    Article 
    PubMed 

    Google Scholar
     

  • Li X-C, Luo S-J, Fan W, Zhou T-L, Tan D-Q, Tan R-X, Xian Q-Z, Li J, Huang C-M, Wang M-S. Macrophage polarization regulates intervertebral disc degeneration by modulating cell proliferation, irritation mediator secretion, and Extracellular Matrix Metabolism. Entrance Immunol. 2022;13:922173. https://doi.org/10.3389/fimmu.2022.922173.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson ZI, Schoepflin ZR, Choi H, Shapiro IM, Risbud MV. Disc in Flames: Roles of TNF-α and IL-1β in Intervertebral Disc Degeneration. Eur Cell Mater 2015, 30, 104–116; dialogue 116–117. https://doi.org/10.22203/ecm.v030a08.

  • Risbud MV, Shapiro IM. Position of cytokines in Intervertebral Disc Degeneration: Ache and Disc Content material. Nat Rev Rheumatol. 2014;10(1):44–56. https://doi.org/10.1038/nrrheum.2013.160.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Che M, Xin J, Zheng Z, Li J, Zhang S. The position of IL-1β and TNF-α in intervertebral disc degeneration. Biomed Pharmacother. 2020;131:110660. https://doi.org/10.1016/j.biopha.2020.110660.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF, Evans CH. Herniated lumbar intervertebral discs spontaneously produce Matrix metalloproteinases, nitric oxide, Interleukin-6, and prostaglandin E2. Backbone (Phila Pa 1976). 1996;21(3):271–7. https://doi.org/10.1097/00007632-199602010-00003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kepler CK, Markova DZ, Dibra F, Yadla S, Vaccaro AR, Risbud MV, Albert TJ, Anderson DG. Expression and relationship of Proinflammatory Chemokine RANTES/CCL5 and cytokine IL-1β in painful human intervertebral discs. Backbone (Phila Pa 1976). 2013;38(11):873–80. https://doi.org/10.1097/BRS.0b013e318285ae08.

    Article 
    PubMed 

    Google Scholar
     

  • Krock E, Millecamps M, Anderson KM, Srivastava A, Reihsen TE, Hari P, Solar YR, Jang SH, Wilcox GL, Belani KG, Beebe DS, Ouellet J, Pinto MR, Kehl LJ, Haglund L, Stone LS. Interleukin-8 as a Therapeutic Goal for Persistent Low Again Ache: Upregulation in Human Cerebrospinal Fluid and Pre-Medical Validation with Persistent Reparixin within the SPARC-Null Mouse Mannequin. EBioMedicine 2019, 43, 487–500. https://doi.org/10.1016/j.ebiom.2019.04.032.

  • Liu X-G, Hou H-W, Liu Y-L. Expression ranges of IL-17 and TNF-α in degenerated lumbar intervertebral discs and their correlation. Exp Ther Med. 2016;11(6):2333–40. https://doi.org/10.3892/etm.2016.3250.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S-J, Park S-M, Cho Y-W, Jung Y-J, Lee D-G, Jang S-H, Park H-W, Hwang S-J, Ahn S-H. Adjustments in expression of mRNA for Interleukin-8 and results of Interleukin-8 receptor inhibitor within the spinal dorsal horn in a rat mannequin of lumbar disc herniation. Backbone (Phila Pa 1976). 2011;36(25):2139–46. https://doi.org/10.1097/BRS.0b013e31821945a3.

    Article 
    PubMed 

    Google Scholar
     

  • Li Z, Liu H, Yang H, Wang J, Wang H, Zhang Okay, Ding W, Zheng Z. Each expression of cytokines and posterior Annulus Fibrosus rupture are important for Ache Conduct Adjustments Induced by degenerative intervertebral disc: an experimental research in rats. J Orthop Res. 2014;32(2):262–72. https://doi.org/10.1002/jor.22494.

    Article 
    PubMed 

    Google Scholar
     

  • Rafieva LM, Gasanov EV. Neurotrophin propeptides: Organic capabilities and Molecular mechanisms. Curr Protein Pept Sci. 2016;17(4):298–305. https://doi.org/10.2174/1389203716666150623104145.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rocco ML, Soligo M, Manni L, Aloe L. Nerve development issue: early research and up to date medical trials. Curr Neuropharmacol. 2018;16(10):1455–65. https://doi.org/10.2174/1570159X16666180412092859.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binch ALA, Cole AA, Breakwell LM, Michael ALR, Chiverton N, Cross AK, Le Maitre CL. Expression and regulation of neurotrophic and angiogenic components throughout human intervertebral disc degeneration. Arthritis Res Ther. 2014;16(5):416. https://doi.org/10.1186/s13075-014-0416-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JM, Track JY, Baek M, Jung H-Y, Kang H, Han IB, Kwon YD, Shin DE. Interleukin-1β induces angiogenesis and innervation in human intervertebral disc degeneration. J Orthop Res. 2011;29(2):265–9. https://doi.org/10.1002/jor.21210.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henry BD, Neill DR, Becker KA, Gore S, Bricio-Moreno L, Ziobro R, Edwards MJ, Mühlemann Okay, Steinmann J, Kleuser B, Japtok L, Luginbühl M, Wolfmeier H, Scherag A, Gulbins E, Kadioglu A, Draeger A, Babiychuk EB. Engineered liposomes Sequester Bacterial exotoxins and defend from extreme invasive infections in mice. Nat Biotechnol. 2015;33(1):81–8. https://doi.org/10.1038/nbt.3037.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu C-MJ, Fang RH, Copp J, Luk BT, Zhang LA. Biomimetic Nanosponge that absorbs pore-forming toxins. Nat Nanotechnol. 2013;8(5):336–40. https://doi.org/10.1038/nnano.2013.54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keller MD, Ching KL, Liang F-X, Dhabaria A, Tam Okay, Ueberheide BM, Unutmaz D, Torres VJ, Cadwell Okay. Decoy exosomes present safety in opposition to bacterial toxins. Nature. 2020;579(7798):260–4. https://doi.org/10.1038/s41586-020-2066-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, Solar Z, Jiang S, Lu L, Wu MX. Pulmonary surfactant-biomimetic nanoparticles Potentiate Heterosubtypic Influenza immunity. Science. 2020;367(6480):eaau0810. https://doi.org/10.1126/science.aau0810.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang P, Chen Y, Zeng Y, Shen C, Li R, Guo Z, Li S, Zheng Q, Chu C, Wang Z, Zheng Z, Tian R, Ge S, Zhang X, Xia N-S, Liu G, Chen X. Virus-Mimetic Nanovesicles as a Versatile Antigen-Supply System. Proc Natl Acad Sci U S A. 2015;112(45):E6129–6138. https://doi.org/10.1073/pnas.1505799112.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang P, Zhang L, Qin Z, Hua S, Guo Z, Chu C, Lin H, Zhang Y, Li W, Zhang X, Chen X, Liu G. Genetically Engineered Liposome-like nanovesicles as energetic focused transport platform. Adv Mater. 2018;30(7). https://doi.org/10.1002/adma.201705350.

  • Parmar N, Chandrakar P, Vishwakarma P, Singh Okay, Mitra Okay, Kar S. Leishmania Donovani exploits Tollip, a multitasking protein, to impair TLR/IL-1R signaling for its survival within the host. J Immunol. 2018;201(3):957–70. https://doi.org/10.4049/jimmunol.1800062.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thamphiwatana S, Angsantikul P, Escajadillo T, Zhang Q, Olson J, Luk BT, Zhang S, Fang RH, Gao W, Nizet V, Zhang L. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for Sepsis Administration. Proc Natl Acad Sci U S A. 2017;114(43):11488–93. https://doi.org/10.1073/pnas.1714267114.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao L, Xia S, Xu W, Tian R, Yu G, Gu C, Pan P, Meng Q-F, Cai X, Qu D, Lu L, Xie Y, Jiang S, Chen X. Decoy nanoparticles defend in opposition to COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci U S A. 2020;117(44):27141–7. https://doi.org/10.1073/pnas.2014352117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu C-MJ, Fang RH, Wang Okay-C, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, Carpenter C, Ramesh M, Qu V, Patel SH, Zhu J, Shi W, Hofman FM, Chen TC, Gao W, Zhang Okay, Chien S, Zhang L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526(7571):118–21. https://doi.org/10.1038/nature15373.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Okay, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, Tanaka KE, Czaja MJ. Impaired macrophage autophagy will increase the Immune response in overweight mice by selling Proinflammatory Macrophage polarization. Autophagy. 2015;11(2):271–84. https://doi.org/10.1080/15548627.2015.1009787.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma J-C, Luo T, Feng B, Huang Z, Zhang Y, Huang H, Yang X, Wen J, Bai X, Cui Z-Okay. Exploring the translational potential of PLGA nanoparticles for Intra-articular Rapamycin Supply in Osteoarthritis Remedy. J Nanobiotechnol. 2023;21(1):361. https://doi.org/10.1186/s12951-023-02118-4.

    Article 
    CAS 

    Google Scholar
     

  • Liu X, Dou G, Li Z, Wang X, Jin R, Liu Y, Kuang H, Huang X, Yang X, Yang X, Liu S, Wu M, Guo H, Ding F, Xu H, Liu S, Jin Y, Xuan Okay. Hybrid Biomaterial initiates Refractory Wound Therapeutic through Inducing transiently heightened inflammatory responses. Adv Sci. 2022;9(21):2105650. https://doi.org/10.1002/advs.202105650.

    Article 
    CAS 

    Google Scholar
     

  • Cui T, Yu J, Wang C, Chen S, Li Q, Guo Okay, Qing R, Wang G, Ren J. Micro-gel ensembles for Accelerated Therapeutic of Persistent Wound through pH regulation. Adv Sci. 2022;9(22):2201254. https://doi.org/10.1002/advs.202201254.

    Article 
    CAS 

    Google Scholar
     

  • Ciesielska A, Matyjek M, Kwiatkowska Okay. TLR4 and CD14 trafficking and its affect on LPS–induced professional–inflammatory signaling. Cell Mol Life Sci. 2021;78(4):1233–61. https://doi.org/10.1007/s00018-020-03656-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams KS, Killebrew DA, Clary GP, Seawell JA, Meeker RB. Differential Regulation of Macrophage phenotype by mature and pro-nerve development issue. J Neuroimmunol. 2015;285:76–93. https://doi.org/10.1016/j.jneuroim.2015.05.016.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen P, Liu X, Gu C, Zhong P, Track N, Li M, Dai Z, Fang X, Liu Z, Zhang J, Tang R, Fan S, Lin XA. Plant-derived pure photosynthetic system for bettering cell anabolism. Nature. 2022;612(7940):546–54. https://doi.org/10.1038/s41586-022-05499-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopes J, Lopes D, Pereira-Silva M, Peixoto D, Veiga F, Hamblin MR, Conde J, Corbo C, Zare EN, Ashrafizadeh M, Tay FR, Chen C, Donnelly RF, Wang X, Makvandi P, Paiva-Santos AC. Macrophage cell membrane-cloaked nanoplatforms for Biomedical Purposes. Small Strategies. 2022;6(8):e2200289. https://doi.org/10.1002/smtd.202200289.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Locati M, Curtale G, Mantovani A, Range. Mechanisms, and significance of macrophage plasticity. Annu Rev Pathol Mech Dis. 2020;15(1):123–47. https://doi.org/10.1146/annurev-pathmechdis-012418-012718.

    Article 
    CAS 

    Google Scholar
     

  • Zhang L, Chen X, Cai P, Solar H, Shen S, Guo B, Jiang Q. Reprogramming mitochondrial metabolism in synovial macrophages of early osteoarthritis by a camouflaged Meta-defensome. Adv Mater. 2022;34(30):e2202715. https://doi.org/10.1002/adma.202202715.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng P, Che Y, Gao C, Zhu L, Gao J, Vo NV. Immune publicity: how macrophages work together with the Nucleus Pulposus. Entrance Immunol. 2023;14:1155746. https://doi.org/10.3389/fimmu.2023.1155746.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamali A, Ziadlou R, Lang G, Pfannkuche J, Cui S, Li Z, Richards RG, Alini M, Grad S. Small molecule-based therapy approaches for intervertebral disc degeneration: present choices and future instructions. Theranostics. 2021;11(1):27–47. https://doi.org/10.7150/thno.48987.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi Okay, Aoki Y, Ohtori S. Resolving Discogenic Ache. Eur Backbone J. 2008;17(Suppl 4):428–31. https://doi.org/10.1007/s00586-008-0752-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furukawa S, Furukawa Y. Nerve development issue synthesis and its Regulatory mechanisms: an Strategy to Therapeutic induction of nerve development issue synthesis. Cerebrovasc Mind Metab Rev. 1990;2(4):328–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Wyatt SL, Spori B, Vizard TN, Davies AM. Selective regulation of nerve development issue expression in creating cutaneous tissue by early sensory innervation. Neural Dev. 2011;6:18. https://doi.org/10.1186/1749-8104-6-18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arthurs JW, Pauli JL, Palmiter RD. Activation of Parabrachial Tachykinin 1 neurons counteracts some behaviors mediated by Parabrachial Calcitonin Gene-related peptide neurons. Neuroscience. 2023;517:105–16. https://doi.org/10.1016/j.neuroscience.2023.03.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sholl DA. Dendritic Group within the neurons of the visible and motor cortices of the cat. J Anat. 1953;87(4):387–406.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira TA, Blackman AV, Oyrer J, Jayabal S, Chung AJ, Watt AJ, Sjöström PJ, van Meyel DJ. Neuronal Morphometry immediately from bitmap photos. Nat Strategies. 2014;11(10):982–4. https://doi.org/10.1038/nmeth.3125.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Day INM, Thompson RJ. UCHL1 (PGP 9.5): neuronal biomarker and Ubiquitin System protein. Prog Neurobiol. 2010;90(3):327–62. https://doi.org/10.1016/j.pneurobio.2009.10.020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brenner M. Position of GFAP in CNS accidents. Neurosci Lett. 2014;565:7–13. https://doi.org/10.1016/j.neulet.2014.01.055.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrera DG, Robertson HA. Activation of C-Fos within the mind. Prog Neurobiol. 1996;50(2–3):83–107. https://doi.org/10.1016/s0301-0082(96)00021-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an rising therapy modality for Most cancers. Nat Rev Drug Discov. 2008;7(9):771–82. https://doi.org/10.1038/nrd2614.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC. Most cancers Nanomedicine: Progress, challenges and alternatives. Nat Rev Most cancers. 2017;17(1):20–37. https://doi.org/10.1038/nrc.2016.108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanco E, Shen H, Ferrari M. Rules of Nanoparticle Design for Overcoming Organic boundaries to Drug Supply. Nat Biotechnol. 2015;33(9):941–51. https://doi.org/10.1038/nbt.3330.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic supply platform. Proc Natl Acad Sci U S A. 2011;108(27):10980–5. https://doi.org/10.1073/pnas.1106634108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie D, Dai Z, Li J, Yang Y, Xi Z, Wang J, Zhang W, Qian Okay, Guo S, Zhu C, Wang R, Li Y, Yu M, Zhang X, Shi X, Gan Y. Most cancers-cell-membrane-coated nanoparticles with a yolk-Shell construction increase Most cancers Chemotherapy. Nano Lett. 2020;20(2):936–46. https://doi.org/10.1021/acs.nanolett.9b03817.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Dehaini D, Zhang Y, Zhou J, Chen X, Zhang L, Fang RH, Gao W, Zhang L. Neutrophil membrane-coated nanoparticles inhibit synovial irritation and alleviate joint injury in inflammatory arthritis. Nat Nanotechnol. 2018;13(12):1182–90. https://doi.org/10.1038/s41565-018-0254-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane Coating Nanotechnology. Adv Mater. 2018;30(23):e1706759. https://doi.org/10.1002/adma.201706759.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y, Zhu R, Zhou M, Liu J, Dong Okay, Zhao S, Cao J, Wang W, Solar C, Wu S, Wang F, Shi Y, Solar Y. Homologous Most cancers cell membrane-camouflaged nanoparticles Goal Drug Supply and improve the Chemotherapy Efficacy of Hepatocellular Carcinoma. Most cancers Lett. 2023;558:216106. https://doi.org/10.1016/j.canlet.2023.216106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Zhao P, Luo Z, Zheng M, Tian H, Gong P, Gao G, Pan H, Liu L, Ma A, Cui H, Ma Y, Cai L. Most cancers Cell membrane–biomimetic nanoparticles for homologous-targeting dual-modal imaging and Photothermal Remedy. ACS Nano. 2016;10(11):10049–57. https://doi.org/10.1021/acsnano.6b04695.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Cai Okay, Li C, Guo Q, Chen Q, He X, Liu L, Zhang Y, Lu Y, Chen X, Solar T, Huang Y, Cheng J, Jiang C. Macrophage membrane-coated nanoparticles for Tumor-targeted chemotherapy. Nano Lett. 2018;18(3):1908–15. https://doi.org/10.1021/acs.nanolett.7b05263.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, Yu CL, Duan Y, Gao W, Fang RH, Zhang L. Engineered cell-membrane-coated nanoparticles immediately Current Tumor antigens to advertise anticancer immunity. Adv Mater. 2020;32(30):e2001808. https://doi.org/10.1002/adma.202001808.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang R, Xu J, Xu L, Solar X, Chen Q, Zhao Y, Peng R, Liu Z. Most cancers Cell membrane-coated adjuvant nanoparticles with mannose modification for efficient anticancer vaccination. ACS Nano. 2018;12(6):5121–9. https://doi.org/10.1021/acsnano.7b09041.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei X, Zhang G, Ran D, Krishnan N, Fang RH, Gao W, Spector SA, Zhang L. T-Cell-mimicking nanoparticles can neutralize HIV Infectivity. Adv Mater. 2018;30(45):e1802233. https://doi.org/10.1002/adma.201802233.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wynn TA, Vannella KM. Macrophages in tissue restore, regeneration, and fibrosis. Immunity. 2016;44(3):450–62. https://doi.org/10.1016/j.immuni.2016.02.015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79(1):541–66. https://doi.org/10.1146/annurev-physiol-022516-034339.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Okay, Yan G, Huang H, Zheng M, Ma Okay, Cui X, Lu D, Zheng L, Zhu B, Cheng J, Zhao J. Anti-inflammatory and Immunomodulatory results of the Extracellular vesicles derived from human umbilical twine mesenchymal stem cells on Osteoarthritis through M2 macrophages. J Nanobiotechnol. 2022;20(1):38. https://doi.org/10.1186/s12951-021-01236-1.

    Article 
    CAS 

    Google Scholar
     

  • Wang Q, Zhou H, Bu Q, Wei S, Li L, Zhou J, Zhou S, Su W, Liu M, Liu Z, Wang M, Lu L. Position of XBP1 in regulating the development of nonalcoholic steatohepatitis. J Hepatol. 2022;77(2):312–25. https://doi.org/10.1016/j.jhep.2022.02.031.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • M2-type exosomes nanoparticles for rheumatoid arthritis remedy through macrophage re-polarization – PubMed. https://pubmed.ncbi.nlm.nih.gov/34793917/ (accessed 2023-09-28).

  • Vézina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a New Antifungal Antibiotic. I. Taxonomy of the manufacturing streptomycete and isolation of the energetic Precept. J Antibiot. 1975;28(10):721–6. https://doi.org/10.7164/antibiotics.28.721.

    Article 

    Google Scholar
     

  • Li J, Kim SG, Blenis J, Rapamycin. One drug, many results. Cell Metab. 2014;19(3):373–9. https://doi.org/10.1016/j.cmet.2014.01.001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim YC, Guan Okay-L, mTOR. A pharmacologic goal for Autophagy Regulation. J Clin Make investments. 2015;125(1):25–32. https://doi.org/10.1172/JCI73939.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mortimore GE, Schworer CM. Induction of autophagy by amino-acid deprivation in Perfused Rat Liver. Nature. 1977;270(5633):174–6. https://doi.org/10.1038/270174a0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weichhart T, Hengstschläger M, Linke M. Regulation of Innate Immune cell operate by mTOR. Nat Rev Immunol. 2015;15(10):599–614. https://doi.org/10.1038/nri3901.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou M, Xu W, Wang J, Yan J, Shi Y, Zhang C, Ge W, Wu J, Du P, Chen Y. Boosting mTOR-Dependent autophagy through Upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal irritation and oxidative stress Damage. EBioMedicine. 2018;35:345–60. https://doi.org/10.1016/j.ebiom.2018.08.035.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park H-S, Track J-W, Park J-H, Lim B-Okay, Moon O-S, Son H-Y, Lee J-H, Gao B, Gained Y-S, Kwon H-J. TXNIP/VDUP1 attenuates Steatohepatitis through Autophagy and fatty acid oxidation. Autophagy. 2021;17(9):2549–64. https://doi.org/10.1080/15548627.2020.1834711.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boada C, Zinger A, Tsao C, Zhao P, Martinez JO, Hartman Okay, Naoi T, Sukhoveshin R, Sushnitha M, Molinaro R, Trachtenberg B, Cooke JP, Tasciotti E. Rapamycin-loaded biomimetic nanoparticles reverse vascular irritation. Circ Res. 2020;126(1):25–37. https://doi.org/10.1161/CIRCRESAHA.119.315185.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laberge R-M, Solar Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, Javors M, Desprez P-Y, Benz CC, Kapahi P, Nelson PS, Campisi JMTOR. Regulates the Professional-tumorigenic Senescence-Related Secretory phenotype by selling IL1A translation. Nat Cell Biol. 2015;17(8):1049–61. https://doi.org/10.1038/ncb3195.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brattström C, Wilczek H, Tydén G, Böttiger Y, Säwe J, Groth CG. Hyperlipidemia in renal transplant recipients handled with Sirolimus (Rapamycin). Transplantation. 1998;65(9):1272–4. https://doi.org/10.1097/00007890-199805150-00023.

    Article 
    PubMed 

    Google Scholar
     

  • Aparicio G, Calvo MB, Medina V, Fernández O, Jiménez P, Lema M, Figueroa A, Antón Aparicio LM. Complete Lung Damage Pathology Induced by mTOR inhibitors. Clin Transl Oncol. 2009;11(8):499–510. https://doi.org/10.1007/s12094-009-0394-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai J, Zhang Y, Fan Q, Xu J, Shan H, Gao X, Ma Q, Sheng L, Zheng X, Cheng W, Li D, Zhang M, Hao Y, Feng L, Chen Q, Zhou X, Wang C. Reactive oxygen species-scavenging Scaffold with Rapamycin for therapy of intervertebral disk degeneration. Adv Healthc Mater. 2020;9(3):1901186. https://doi.org/10.1002/adhm.201901186.

    Article 
    CAS 

    Google Scholar
     

  • Yang M, Liu J, Shao J, Qin Y, Ji Q, Zhang X, Du J. Cathepsin S-Mediated autophagic flux in Tumor-Related macrophages speed up Tumor Growth by selling M2 polarization. Mol Most cancers. 2014;13(1):43. https://doi.org/10.1186/1476-4598-13-43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fox R, Nhan TQ, Legislation GL, Morris DR, Liles WC, Schwartz SM. PSGL-1 and mTOR regulate translation of ROCK-1 and physiological capabilities of macrophages. EMBO J. 2007;26(2):505–15. https://doi.org/10.1038/sj.emboj.7601522.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory capabilities of mTOR inhibition. Nat Rev Immunol. 2009;9(5):324–37. https://doi.org/10.1038/nri2546.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyu F-J, Cui H, Pan H, Cheung MC, Cao Okay, Iatridis X, Zheng JC. Painful intervertebral disc degeneration and irritation: from Laboratory proof to medical interventions. Bone Res. 2021;9:7. https://doi.org/10.1038/s41413-020-00125-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markman JD, Bolash RB, McAlindon TE, Kivitz AJ, Pombo-Suarez M, Ohtori S, Roemer FW, Li DJ, Viktrup L, Bramson C, West CR, Verburg KM. Tanezumab for Persistent Low Again Ache: a Randomized, Double-Blind, placebo- and activecontrolled, part 3 research of efficacy and security. Ache. 2020;161(9):2068–78. https://doi.org/10.1097/j.ache.0000000000001928.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beckstein JC, Sen S, Schaer TP, Vresilovic EJ, Elliott DM. Comparability of Animal Discs Utilized in Disc Analysis to Human Lumbar Disc.

  • Thamphiwatana S, Angsantikul P, Escajadillo T, Zhang Q, Olson J, Luk BT, Zhang S, Fang RH, Gao W, Nizet V, Zhang L. Macrophage-like Nanoparticles Concurrently Absorbing Endotoxins and Proinflammatory Cytokines for Sepsis Administration. Proc. Natl. Acad. Sci. U.S.A 2017, 114 (43), 11488–11493. https://doi.org/10.1073/pnas.1714267114.

  • Gao X, Hai X, Baigude H, Guan W, Liu Z. Fabrication of purposeful Hole microspheres constructed from MOF shells: Promising Drug Supply programs with Excessive Loading Capability and focused transport. Sci Rep. 2016;6:37705. https://doi.org/10.1038/srep37705.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Courtney TM, Darrah KE, Horst TJ, Tsang M, Deiters A. Blue Mild Activated Rapamycin for Optical Management of Protein Dimerization in cells and zebrafish embryos. ACS Chem Biol. 2021;16(11):2434–43. https://doi.org/10.1021/acschembio.1c00547.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tai W, Chen Z, Barve A, Peng Z, Cheng KA. Novel rapamycin-polymer Conjugate based mostly on a New Poly(Ethylene Glycol) Multiblock Copolymer. Pharm Res. 2014;31(3):706–19. https://doi.org/10.1007/s11095-013-1192-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Focused Noninvasive Remedy of Choroidal Neovascularization by Hybrid Cell-Membrane-Cloaked Biomimetic Nanoparticles – PubMed. https://pubmed.ncbi.nlm.nih.gov/34037377/ (accessed 2024-02-18).

  • Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z. Correct animal experimental designs for Preclinical Analysis of Biomaterials for intervertebral disc regeneration. Biomater Transl. 2021;2(2):91–142. https://doi.org/10.12336/biomatertransl.2021.02.003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohd Isa IL, Abbah SA, Kilcoyne M, Sakai D, Dockery P, Finn DP, Pandit A. Implantation of Hyaluronic Acid Hydrogel prevents the Ache phenotype in a rat mannequin of intervertebral disc Damage. Sci Adv. 2018;4(4):eaaq0597. https://doi.org/10.1126/sciadv.aaq0597.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng Y, Qing X, Lin H, Huang D, Li J, Tian S, Liu S, Lv X, Ma Okay, Li R, Rao Z, Bai Y, Chen S, Lei M, Quan D, Shao Z. Decellularized disc hydrogels for hBMSCs tissue-specific differentiation and tissue regeneration. Bioactive Mater. 2021;6(10):3541–56. https://doi.org/10.1016/j.bioactmat.2021.03.014.

    Article 
    CAS 

    Google Scholar
     

  • Han B, Zhu Okay, Li F, Xiao Y, Feng J, Shi Z, Lin M, Wang J, Chen QA. Easy disc degeneration Mannequin Induced by Percutaneous needle puncture within the rat tail. Backbone. 2008;33(18):1925–34. https://doi.org/10.1097/BRS.0b013e31817c64a9.

    Article 
    PubMed 

    Google Scholar
     

  • Le Maitre CL, Dahia CL, Giers M, Illien-Junger S, Cicione C, Samartzis D, Vadala G, Fields A, Lotz J. Growth of a standardized histopathology Scoring System for Human intervertebral disc degeneration: an Orthopaedic Analysis Society Backbone Part Initiative. JOR Backbone. 2021;4(2):e1167. https://doi.org/10.1002/jsp2.1167.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *