Quantifying T cell receptor mechanics at membrane junctions utilizing DNA origami rigidity sensors

  • Huang, J. et al. A single peptide-major histocompatibility complicated ligand triggers digital cytokine secretion in CD4(+) T cells. Immunity 39, 846–857 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sasmal, D. Ok. et al. TCR–pMHC bond conformation controls TCR ligand discrimination. Cell Mol. Immunol. 17, 203–217 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. T. et al. The αβ T cell receptor is an anisotropic mechanosensor. J. Biol. Chem. 284, 31028–31037 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, M. S. et al. A mechanical swap {couples} T cell receptor triggering to the cytoplasmic juxtamembrane areas of CD3ζζ. Immunity 43, 227–239 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B. et al. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157, 357–368 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Y. et al. Mechanosensing drives acuity of αβ T cell recognition. Proc. Natl Acad. Sci. USA 114, E8204–E8213 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. DNA-based digital rigidity probes reveal integrin forces throughout early cell adhesion. Nat. Commun. 5, 5167 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stabley, D. R. et al. Visualizing mechanical rigidity throughout membrane receptors with a fluorescent sensor. Nat. Strategies 9, 64–67 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Chang, A. C. et al. Single molecule drive measurements in dwelling cells reveal a minimally tensioned integrin state. ACS Nano 10, 10745–10752 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, J. et al. A TCR mechanotransduction signaling loop induces damaging choice within the thymus. Nat. Immunol. 19, 1379–1390 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. DNA-based nanoparticle rigidity sensors reveal that T cell receptors transmit outlined pN forces to their antigens for enhanced constancy. Proc. Natl Acad. Sci. USA 113, 5610–5615 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. S. et al. Mechanically lively integrins goal lytic secretion on the immune synapse to facilitate mobile cytotoxicity. Nat. Commun. 13, 3222 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, V. P. et al. Ratiometric rigidity probes for mapping receptor forces and clustering at intermembrane junctions. Nano Lett. 16, 4552–4559 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gohring, J. et al. Temporal evaluation of T cell receptor-imposed forces by way of quantitative single molecule FRET measurements. Nat. Commun. 12, 2502 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowosad, C. R. et al. Germinal heart B cells acknowledge antigen via a specialised immune synapse structure. Nat. Immunol. 17, 870–877 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sage, P. T. et al. Antigen recognition is facilitated by invadosome-like protrusions fashioned by reminiscence/effector T cells. J. Immunol. 188, 3686–3699 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aramesh, M. et al. Functionalized bead assay to measure three-dimensional traction forces throughout T cell activation. Nano Lett. 21, 507–514 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wahl, A. et al. Biphasic mechanosensitivity of T cell receptor-mediated spreading of lymphocytes. Proc. Natl Acad. Sci. USA 116, 5908–5913 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saitakis, M. et al. Totally different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. eLife 6, e23190 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hellmeier, J. et al. DNA origami show the distinctive stimulatory energy of single pMHCs as T cell antigens. Proc. Natl Acad. Sci. USA 118, e2016857118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, R. et al. DNA origami patterning of artificial T cell receptors reveals spatial management of the sensitivity and kinetics of sign activation. Proc. Natl Acad. Sci. USA 118, e2109057118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, T. et al. Spatial regulation of T cell signaling by programmed death-ligand 1 on wireframe DNA origami flat sheets. ACS Nano 15, 3441–3452 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damjanovich, S. et al. Distribution and mobility of murine histocompatibility H-2Kokay antigen within the cytoplasmic membrane. Proc. Natl Acad. Sci. USA 80, 5985–5989 (1983).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glazier, R. et al. DNA mechanotechnology reveals that integrin receptors apply pN forces in podosomes on fluid substrates. Nat. Commun. 10, 4507 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monks, C. R. F. et al. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • James, J. R. et al. Biophysical mechanism of T cell receptor triggering in a reconstituted system. Nature 487, 64–69 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenkins, E. et al. Antigen discrimination by T cells depends on size-constrained microvillar contact. Nat. Commun. 14, 1611 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, E. et al. Visualizing dynamic microvillar search and stabilization throughout ligand detection by T cells. Science 356, eaal3118 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hatch, Ok. et al. Demonstration that the shear drive required to separate brief double-stranded DNA doesn’t enhance considerably with sequence size for sequences longer than 25 base pairs. Phys. Rev. E 78, 011920 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Woodside, M. T. et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl Acad. Sci. USA 103, 6190–6195 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, R. et al. DNA probes that retailer mechanical data reveal transient piconewton forces utilized by T cells. Proc. Natl Acad. Sci. USA 116, 16949–16954 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glazier, R. et al. Spectroscopic evaluation of a library of DNA rigidity probes for mapping mobile forces at fluid interfaces. ACS Appl. Mater. Interfaces 13, 2145–2164 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Defining single molecular forces required to activate integrin and notch signaling. Science 340, 991–994 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitton, J. L. et al. Purposeful avidity maturation of CD8+ T cells with out collection of increased affinity TCR. Nat. Immunol. 2, 711–717 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Thauland, T. J. et al. Cytoskeletal adaptivity regulates T cell receptor signaling. Sci. Sign 10, eaah3737 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fletcher, D. A. et al. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borroto, A. et al. First-in-class inhibitor of the T cell receptor for the remedy of autoimmune ailments. Sci. Transl. Med. 8, 370ra184 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Barda-Saad, M. et al. Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat. Immunol. 6, 80–89 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, X. et al. Part separation of signaling molecules promotes T cell receptor sign transduction. Science 352, 595–599 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Aghbar, M. A. et al. The interaction between membrane topology and mechanical forces in regulating T cell receptor exercise. Commun. Biol. 5, 40 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allard, J. F. et al. Mechanical modulation of receptor–ligand interactions at cell–cell interfaces. Biophys. J. 102, 1265–1273 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cespedes, P. F. et al. T cell trans-synaptic vesicles are distinct and carry higher effector content material than constitutive extracellular vesicles. Nat. Commun. 13, 3460 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olden, B. R. et al. Cell-templated silica microparticles with supported lipid bilayers as synthetic antigen-presenting cells for T cell activation. Adv. Well being. Mater. 8, e1801188 (2019).

    Article 

    Google Scholar
     

  • Zhao, X. et al. Tuning T cell receptor sensitivity via catch bond engineering. Science 376, eabl5282 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Y. et al. A bead-based methodology for high-throughput mapping of the sequence- and force-dependence of T cell activation. Nat. Strategies 19, 1295–1305 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grakoui, A. et al. The immunological synapse—a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumari, S. et al. T cell antigen receptor activation and actin cytoskeleton transforming. Biochim. Biophys. Acta 1838, 546–556 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, Z. et al. Programming cell–cell communications with engineered cell origami clusters. J. Am. Chem. Soc. 142, 8800–8808 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, W. et al. Cell-surface sensors for real-time probing of mobile environments. Nat. Nanotechnol. 6, 524–531 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. The consequences of overhang placement and multivalency on cell labeling by DNA origami. Nanoscale 13, 6819–6828 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akbari, E. et al. Engineering cell floor perform with DNA origami. Adv. Mater. 29, 1703632 (2017).

    Article 

    Google Scholar
     

  • Lei, Ok. et al. Most cancers-cell stiffening by way of ldl cholesterol depletion enhances adoptive T cell immunotherapy. Nat. Biomed. Eng. 5, 1411–1425 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bashour, Ok. T. et al. CD28 and CD3 have complementary roles in T cell traction forces. Proc. Natl Acad. Sci. USA 111, 2241–2246 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, H. et al. Full management of ligand positioning reveals spatial thresholds for T cell receptor triggering. Nat. Nanotechnol. 13, 610–617 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deeg, J. et al. T cell activation is set by the variety of introduced antigens. Nano Lett. 13, 5619–5626 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amiri, S. et al. Intracellular rigidity sensor reveals mechanical anisotropy of the actin cytoskeleton. Nat. Commun. 14, 8011 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galush, W. J. et al. Quantitative fluorescence microscopy utilizing supported lipid bilayer requirements. Biophys. J. 95, 2512–2519 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *