Exosomes as therapeutic and drug supply car for neurodegenerative illnesses | Journal of Nanobiotechnology

  • Nowell J, Blunt E, Edison P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer’s and Parkinson’s illness. Mol Psychiatry. 2023;28(1):217–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barrie W, Yang Y, Irving-Pease EK, Attfield KE, Scorrano G, Jensen LT, et al. Elevated genetic threat for a number of sclerosis emerged in steppe pastoralist populations. Nature. 2024;625(7994):321–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pu L, Wang L, Zhang R, Zhao T, Jiang Y, Han L. Projected world traits in ischemic stroke incidence, deaths and disability-adjusted life years from 2020 to 2030. Stroke. 2023;54(5):1330–9.

    Article 
    PubMed 

    Google Scholar
     

  • Yadollahi M, Karajizadeh M, Bordbar N, Ghahramani Z. Incidence and sample of traumatic backbone harm in a single stage I trauma heart of southern Iran. Chin J Traumatol. 2023;26(4):199–203.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knox EG, Aburto MR, Clarke G, Cryan JF, O’Driscoll CM. The blood-brain barrier in getting old and neurodegeneration. Mol Psychiatry. 2022;27(6):2659–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan I, Gothwal A, Mishra G, Gupta U. Polymeric micelles. Funct Biopolymers. 2018:1–29.

  • Martano S, De Matteis V, Cascione M, Rinaldi R. Inorganic nanomaterials versus polymer-based nanoparticles for overcoming neurodegeneration. Nanomaterials. 2022;12(14):2337.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayat F, Hosseinpour-Moghadam R, Mehryab F, Fatahi Y, Shakeri N, Dinarvand R, et al. Potential software of liposomal nanodevices for non-cancer illnesses: an replace on design, characterization and biopharmaceutical analysis. Adv Colloid Interface Sci. 2020;277:102121.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R, et al. Overview on methods and applied sciences for exosome isolation and purification. Entrance Bioeng Biotechnol. 2022;9:811971.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y-S, Ng HY, Chen Y-W, Cho D-Y, Ho C-C, Chen C-Y, et al. Additive manufacturing of Schwann cell-laden collagen/alginate nerve steering conduits by freeform reversible embedding regulate neurogenesis through exosomes secretion in direction of peripheral nerve regeneration. Biomaterials Adv. 2023;146:213276.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Zhao F, Zhao Y, Bai L, Hold R. Concurrently enhanced osteogenesis and angiogenesis through macrophage-derived exosomes upon stimulation with titania nanotubes. Biomaterials Adv. 2022;134:112708.

    Article 
    CAS 

    Google Scholar
     

  • Narang P, Shah M, Beljanski V. Exosomal RNAs in analysis and therapies. Non-coding RNA Res. 2022;7(1):7–15.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Zhou Y, Gao Q, Ping D, Wang Y, Wu W et al. The function of exosomal microRNAs and oxidative stress in neurodegenerative illnesses. Oxidative medication and mobile longevity. 2020;2020.

  • Kumari M, Anji A. Small however Mighty—Exosomes, Novel Intercellular messengers in Neurodegeneration. Biology. 2022;11(3):413.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, et al. Exosomes launched from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound therapeutic by selling collagen synthesis and angiogenesis. J Translational Med. 2015;13:1–14.

    Article 

    Google Scholar
     

  • Ji P, Yang Z, Li H, Wei M, Yang G, Xing H, et al. Sensible exosomes with lymph node homing and immune-amplifying capacities for enhanced immunotherapy of metastatic breast most cancers. Mol Remedy-Nucleic Acids. 2021;26:987–96.

    Article 
    CAS 

    Google Scholar
     

  • Zou Y, Li L, Li Y, Chen S, Xie X, Jin X, et al. Restoring cardiac capabilities after myocardial infarction–ischemia/reperfusion through an exosome anchoring conductive hydrogel. ACS Appl Mater Interfaces. 2021;13(48):56892–908.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong B, Wang C, Zhang J, Zhang J, Gu Y, Guo X, et al. Exosomes from human umbilical wire mesenchymal stem cells attenuate the irritation of extreme steroid-resistant bronchial asthma by reshaping macrophage polarization. Stem Cell Res Ther. 2021;12:1–17.

    Article 

    Google Scholar
     

  • Mehryab F, Rabbani S, Shahhosseini S, Shekari F, Fatahi Y, Baharvand H, et al. Exosomes as a next-generation drug supply system: an replace on drug loading approaches, characterization, and scientific software challenges. Acta Biomater. 2020;113:42–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dilsiz N. Exosomes as new technology autos for drug supply methods. J Drug Deliv Sci Technol. 2024:105562.

  • Filipović L, Kojadinović M, Popović M. Exosomes and exosome-mimetics as focused drug carriers: the place we stand and what the long run holds? J Drug Deliv Sci Technol. 2022;68:103057.

    Article 

    Google Scholar
     

  • Croese T, Furlan R. Extracellular vesicles in neurodegenerative illnesses. Mol Elements Med. 2018;60:52–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao P, Li X, Du X, Liu S, Xu Y. Diagnostic and therapeutic potential of exosomes in neurodegenerative illnesses. Entrance Growing older Neurosci. 2021;13:790863.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarko DK, McKinney CE. Exosomes: origins and therapeutic potential for neurodegenerative illness. Entrance NeuroSci. 2017;11:82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salarpour S, Barani M, Pardakhty A, Khatami M, Chauhan NPS. The appliance of exosomes and exosome-nanoparticle in treating mind issues. J Mol Liq. 2022;350:118549.

    Article 
    CAS 

    Google Scholar
     

  • Rehman FU, Liu Y, Zheng M, Shi B. Exosomes primarily based methods for mind drug supply. Biomaterials. 2023;293:121949.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bashyal S, Thapa C, Lee S. Latest progresses in exosome-based methods for focused drug supply to the mind. J Managed Launch. 2022;348:723–44.

    Article 
    CAS 

    Google Scholar
     

  • Kadbhane A, Patel M, Srivastava S, Singh PK, Madan J, Singh SB, et al. Perspective insights and software of exosomes as a novel device towards neurodegenerative issues: an expository appraisal. J Drug Deliv Sci Technol. 2021;63:102526.

    Article 
    CAS 

    Google Scholar
     

  • Ren J, He W, Zheng L, Duan H. From constructions to capabilities: insights into exosomes as promising drug supply autos. Biomaterials Sci. 2016;4(6):910–21.

    Article 
    CAS 

    Google Scholar
     

  • Frydrychowicz M, Kolecka-Bednarczyk A, Madejczyk M, Yasar S, Dworacki G. Exosomes–construction, biogenesis and organic function in non‐small‐cell lung most cancers. Scand J Immunol. 2015;81(1):2–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Communication Sign. 2021;19(1):1–19.

    Article 

    Google Scholar
     

  • Arenaccio C, Federico M. The multifaceted capabilities of exosomes in well being and illness: an summary. Exosomes in Cardiovascular Ailments: Biomarkers, Pathological and Therapeutic Results. 2017:3–19.

  • Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Visitors. 2011;12(12):1659–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rastogi S, Sharma V, Bharti PS, Rani Ok, Modi GP, Nikolajeff F, et al. The evolving panorama of exosomes in neurodegenerative illnesses: exosomes traits and a promising function in early analysis. Int J Mol Sci. 2021;22(1):440.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seaside A, Zhang H-G, Ratajczak MZ, Kakar SS. Exosomes: an summary of biogenesis, composition and function in ovarian most cancers. J Ovarian Res. 2014;7:1–11.

    Article 

    Google Scholar
     

  • Jan AT, Rahman S, Badierah R, Lee EJ, Mattar EH, Redwan EM, et al. Expedition into exosome biology: a perspective of progress from discovery to therapeutic growth. Cancers. 2021;13(5):1157.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia H, Inexperienced DR, Zou W. Autophagy in tumour immunity and remedy. Nat Rev Most cancers. 2021;21(5):281–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassanpour M, Rezabakhsh A, Rezaie J, Nouri M, Rahbarghazi R. Exosomal cargos modulate autophagy in recipient cells through totally different signaling pathways. Cell Bioscience. 2020;10(1):1–16.

    Article 

    Google Scholar
     

  • Alvarez-Jiménez VD, Leyva-Paredes Ok, García-Martínez M, Vázquez-Flores L, García-Paredes VG, Campillo-Navarro M, et al. Extracellular vesicles launched from Mycobacterium tuberculosis-infected neutrophils promote macrophage autophagy and reduce intracellular mycobacterial survival. Entrance Immunol. 2018;9:272.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu M, Zhang P. EGFR-mediated autophagy in tumourigenesis and therapeutic resistance. Most cancers Lett. 2020;469:207–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune M, Wang Y, Shang Z-F, Liu X-D, Xie D-F, Wang Q, et al. Bystander autophagy mediated by radiation-induced exosomal mir-7-5p in non-targeted human bronchial epithelial cells. Sci Rep. 2016;6(1):30165.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao C, Wang Ok, Xu Y, Hu H, Zhang N, Wang Y, et al. Transplanted mesenchymal stem cells cut back autophagic flux in infarcted hearts through the exosomal switch of miR-125b. Circul Res. 2018;123(5):564–78.

    Article 
    CAS 

    Google Scholar
     

  • Zheng X, Li W, Xu H, Liu J, Ren L, Yang Y, et al. Sinomenine ester spinoff inhibits glioblastoma by inducing mitochondria-dependent apoptosis and autophagy by PI3K/AKT/mTOR and AMPK/mTOR pathway. Acta Pharm Sinica B. 2021;11(11):3465–80.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, Jin X, Hu C-F, Li R, Zhou Ze, Shen C-X. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion harm by inducing cardiomyocyte autophagy through AMPK and akt pathways. Cell Physiol Biochem. 2017;43(1):52–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebrahim N, Ahmed IA, Hussien NI, Dessouky AA, Farid AS, Elshazly AM, et al. Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction by the mTOR signaling pathway. Cells. 2018;7(12):226.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin J, Shi Y, Gong J, Zhao L, Li Y, He Q, et al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by selling autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res Ther. 2019;10:1–15.

    Article 

    Google Scholar
     

  • Chiang W-C, Wei Y, Kuo Y-C, Wei S, Zhou A, Zou Z, et al. Excessive-throughput screens to establish autophagy inducers that perform by disrupting Beclin 1/Bcl-2 binding. ACS Chem Biol. 2018;13(8):2247–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu Y, Zhang Q, Cai X, Li F, Ma Z, Xu M, et al. Exosomes derived from mir-181‐5p‐modified adipose‐derived mesenchymal stem cells stop liver fibrosis through autophagy activation. J Cell Mol Med. 2017;21(10):2491–502.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Solar X, Gong X, Wang G. Human umbilical wire mesenchymal stem cells derived exosomes exert antiapoptosis impact through activating PI3K/Akt/mTOR pathway on H9C2 cells. J Cell Biochem. 2019;120(9):14455–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie M-Y, Hou L-J, Solar J-J, Zeng B, Xi Q-Y, Luo J-Y, et al. Porcine milk exosome MiRNAs attenuate LPS-induced apoptosis by inhibiting TLR4/NF-κB and p53 pathways in intestinal epithelial cells. J Agric Meals Chem. 2019;67(34):9477–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao J, Pan Y, Li X, Yang X, Feng Y, Tan H, et al. Cardiac progenitor cell-derived exosomes stop cardiomyocytes apoptosis by exosomal miR-21 by concentrating on PDCD4. Cell Demise Dis. 2016;7(6):e2277–e.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Ok, Chen Q, Li M, He L, Riaz F, Zhang T, et al. Programmed cell loss of life issue 4 (PDCD4), a novel remedy goal for metabolic illnesses apart from most cancers. Free Radic Biol Med. 2020;159:150–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Chen J, Cheng Y, Fu Y, Zhao H, Tang M, et al. Mesenchymal stem cell-derived exosomes defend beta cells towards hypoxia-induced apoptosis through miR-21 by assuaging ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Res Ther. 2020;11(1):1–13.

    Article 

    Google Scholar
     

  • Zhang J, Ma J, Lengthy Ok, Qiu W, Wang Y, Hu Z, et al. Overexpression of exosomal cardioprotective miRNAs mitigates hypoxia-induced H9c2 cells apoptosis. Int J Mol Sci. 2017;18(4):711.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubinstein AD, Eisenstein M, Ber Y, Bialik S, Kimchi A. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 relations to advertise mitochondrial apoptosis. Mol Cell. 2011;44(5):698–709.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Setsuta Ok, Seino Y, Ogawa T, Ohtsuka T, Seimiya Ok, Takano T. Ongoing myocardial harm in persistent coronary heart failure is expounded to activated tumor necrosis issue and Fas/Fas ligand system. Circ J. 2004;68(8):747–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen Z, Mai Z, Zhu X, Wu T, Chen Y, Geng D, et al. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic situations by microRNA144 by concentrating on the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11(1):1–17.

    Article 

    Google Scholar
     

  • Wei H, Xu Y, Chen Q, Chen H, Zhu X, Li Y. Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis. Cell Demise Dis. 2020;11(4):290.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Zhang L, Li Y, Chen L, Wang X, Guo W, et al. Exosomes/microvesicles from induced pluripotent stem cells ship cardioprotective miRNAs and stop cardiomyocyte apoptosis within the ischemic myocardium. Int J Cardiol. 2015;192:61–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arabpour M, Saghazadeh A, Rezaei N. Anti-inflammatory and M2 macrophage polarization-promoting impact of mesenchymal stem cell-derived exosomes. Int Immunopharmacol. 2021;97:107823.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Wang T, Tian H, Wei G, Zhao L, Shi Y. Macrophage-derived exosomes speed up wound therapeutic by their anti-inflammation results in a diabetic rat mannequin. Artif Cells Nanomed Biotechnol. 2019;47(1):3793–803.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Y, Qu H, He J, Zhong H, He S, Zhao P, et al. Human placental mesenchymal stem cell derived exosomes exhibit anti-inflammatory results through TLR4-mediated NF-κB/MAPK and PI3K signaling pathways. Die Pharmazie-An Int J Pharm Sci. 2022;77(3–4):112–7.

    CAS 

    Google Scholar
     

  • Yang C, Lim W, Park J, Park S, You S, Tune G. Anti-inflammatory results of mesenchymal stem cell-derived exosomal microRNA-146a-5p and microRNA-548e-5p on human trophoblast cells. Mol Hum Reprod. 2019;25(11):755–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim M, Shin DI, Choi BH, Min B-H. Exosomes from IL-1β-primed mesenchymal stem cells inhibited IL-1β-and TNF-α-mediated inflammatory responses in osteoarthritic SW982 cells. Tissue Eng Regenerative Med. 2021:1–12.

  • Fakhri S, Nouri Z, Moradi SZ, Farzaei MH, Astaxanthin. COVID-19 and immune response: concentrate on oxidative stress, apoptosis and autophagy. Phytother Res. 2020;34(11):2790.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang R, Peng L, Zhao J, Zhang L, Guo C, Zheng W, et al. Gardenamide A protects RGC-5 cells from H2O2-induced oxidative stress insults by activating PI3K/Akt/eNOS signaling pathway. Int J Mol Sci. 2015;16(9):22350–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan Q, Kuang X, Cai S, Wang X, Du D, Wang J, et al. Mir-132-3p priming enhances the results of mesenchymal stromal cell-derived exosomes on ameliorating mind ischemic harm. Stem Cell Res Ther. 2020;11(1):1–17.

    Article 

    Google Scholar
     

  • Luo Q, Xian P, Wang T, Wu S, Solar T, Wang W, et al. Antioxidant exercise of mesenchymal stem cell-derived extracellular vesicles restores hippocampal neurons following seizure harm. Theranostics. 2021;11(12):5986.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen Ok, Jia Y, Wang X, Zhang J, Liu Ok, Wang J, et al. Exosomes from adipose-derived stem cells alleviate the irritation and oxidative stress through regulating Nrf2/HO-1 axis in macrophages. Free Radic Biol Med. 2021;165:54–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan C, Xv Y, Lin Z, Endo Y, Xue H, Hu Y, et al. Human umbilical wire mesenchymal stem cell-derived exosomes speed up diabetic wound therapeutic through ameliorating oxidative stress and selling angiogenesis. Entrance Bioeng Biotechnol. 2022;10:829868.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang Y, Tune Y, Luo Y, Tune J, Li C, Yang S, et al. Exosomes derived from human umbilical wire mesenchymal stem cells ameliorate experimental non-alcoholic steatohepatitis through Nrf2/NQO-1 pathway. Free Radic Biol Med. 2022;192:25–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alahmari A. Blood-brain barrier overview: structural and practical correlation. Neural Plasticity. 2021;2021.

  • Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, et al. Polymeric nanoparticles for nasal drug supply to the mind: relevance to Alzheimer’s illness. Adv Ther. 2021;4(3):2000076.

    Article 
    CAS 

    Google Scholar
     

  • Rehman FU, Liu Y, Zheng M, Shi B. Exosomes primarily based methods for mind drug supply. Biomaterials. 2022:121949.

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, et al. Nano primarily based drug supply methods: current developments and future prospects. J Nanobiotechnol. 2018;16(1):1–33.

    Article 

    Google Scholar
     

  • Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug supply autos for Parkinson’s illness remedy. J Managed Launch. 2015;207:18–30.

    Article 
    CAS 

    Google Scholar
     

  • Shetgaonkar GG, Marques SM, DCruz CE, Vibhavari R, Kumar L, Shirodkar RK. Exosomes as cell-derivative carriers within the analysis and remedy of central nervous system illnesses. Drug Supply Translational Res. 2022;12(5):1047–79.

    Article 
    CAS 

    Google Scholar
     

  • Chen Y, Li J, Ma B, Li N, Wang S, Solar Z, et al. MSC-derived exosomes promote restoration from traumatic mind harm through microglia/macrophages in rat. Growing older. 2020;12(18):18274.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E, et al. Macrophage exosomes as pure nanocarriers for protein supply to infected mind. Biomaterials. 2017;142:1–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi H, Choi Ok, Kim D-H, Oh B-Ok, Yim H, Jo S, et al. Methods for focused supply of exosomes to the mind: benefits and challenges. Pharmaceutics. 2022;14(3):672.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim G, Kim M, Lee Y, Byun JW, Lee M. Systemic supply of microRNA-21 antisense oligonucleotides to the mind utilizing T7-peptide embellished exosomes. J Managed Launch. 2020;317:273–81.

    Article 
    CAS 

    Google Scholar
     

  • Yu Y, Li W, Mao L, Peng W, Lengthy D, Li D, et al. Genetically engineered exosomes show RVG peptide and selectively enrich a neprilysin variant: a possible formulation for the remedy of Alzheimer’s illness. J Drug Goal. 2021;29(10):1128–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Douglas DR, Luoma V, Reddy U. Acute administration of ischaemic stroke. Anaesth Intensive Care Med. 2020;21(1):1–7.

    Article 

    Google Scholar
     

  • Qi B, Zhang Y, Xu B, Zhang Y, Fei G, Lin L, et al. Metabolomic characterization of Acute ischemic stroke facilitates metabolomic Biomarker Discovery. Appl Biochem Biotechnol. 2022;194(11):5443–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pei X, Li Y, Zhu L, Zhou Z. Astrocyte-derived exosomes suppress autophagy and ameliorate neuronal harm in experimental ischemic stroke. Exp Cell Res. 2019;382(2):111474.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou S, Gao B, Solar C, Bai Y, Cheng D, Zhang Y, et al. Vascular endothelial cell-derived exosomes defend neural stem cells towards ischemia/reperfusion harm. Neuroscience. 2020;441:184–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernal A, Arranz L. Nestin-expressing progenitor cells: perform, identification and therapeutic implications. Cell Mol Life Sci. 2018;75(12):2177–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar J, Yuan Q, Guo L, Xiao G, Zhang T, Liang B, et al. Mind microvascular endothelial cell-derived exosomes defend neurons from Ischemia–Reperfusion Harm in mice. Prescribed drugs. 2022;15(10):1287.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ju Y, Bai H, Ren L, Zhang L. The function of exosome and the ESCRT pathway on enveloped virus an infection. Int J Mol Sci. 2021;22(16):9060.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon E-J, Choi Y, Kim TM, Choi E-Ok, Kim Y-B, Park D. The neuroprotective results of exosomes derived from TSG101-overexpressing human neural stem cells in a stroke mannequin. Int J Mol Sci. 2022;23(17):9532.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu C, Zhang Q, Li Y, Li R, Feng J, Chen W, et al. The PI3K/AKT pathway-the potential key mechanisms of conventional Chinese language Medication for Stroke. Entrance Med (Lausanne). 2022;9:900809.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W-Y, Zhu Q-B, Jin L-Y, Yang Y, Xu X-Y, Hu X-Y. Exosomes derived from human induced pluripotent stem cell-derived neural progenitor cells defend neuronal perform underneath ischemic situations. Neural Regeneration Res. 2021;16(10):2064.

    Article 
    CAS 

    Google Scholar
     

  • Liu W, Wang X, O’Connor M, Wang G, Han F. Mind-derived neurotrophic issue and its potential therapeutic function in Stroke comorbidities. Neural Plast. 2020;2020:1969482.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Jiang J, Zhou T, Xue X, Cao Y. Enchancment of cerebral ischemia-reperfusion harm through regulation of apoptosis by exosomes derived from BDNF-overexpressing HEK293. BioMed Analysis Worldwide. 2021;2021.

  • Zhu Z-H, Jia F, Ahmed W, Zhang G-L, Wang H, Lin C-Q, et al. Neural stem cell-derived exosome as a nano-sized provider for BDNF supply to a rat mannequin of ischemic stroke. Neural Regeneration Res. 2023;18(2):404.

    Article 
    CAS 

    Google Scholar
     

  • Rodrigo R, Fernandez-Gajardo R, Gutierrez R, Matamala JM, Carrasco R, Miranda-Merchak A, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic alternatives. CNS Neurol Disord Drug Targets. 2013;12(5):698–714.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo L, Pan J, Li F, Zhao L, Shi Y. A novel mind focused plasma exosomes improve the neuroprotective efficacy of edaravone in ischemic stroke. IET Nanobiotechnol. 2021;15(1):107–16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li F, Zhao L, Shi Y, Liang J. Edaravone-loaded macrophage-derived exosomes improve neuroprotection within the rat everlasting center cerebral artery occlusion mannequin of stroke. Mol Pharm. 2020;17(9):3192–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Z, Guo L, Huang L, Shi Y, Liang J, Zhao L. Baicalin-loaded macrophage-derived exosomes ameliorate ischemic mind harm through the antioxidative pathway. Mater Sci Engineering: C. 2021;126:112123.

    Article 
    CAS 

    Google Scholar
     

  • He R, Jiang Y, Shi Y, Liang J, Zhao L. Curcumin-laden exosomes goal ischemic mind tissue and alleviate cerebral ischemia-reperfusion harm by inhibiting ROS-mediated mitochondrial apoptosis. Mater Sci Engineering: C. 2020;117:111314.

    Article 
    CAS 

    Google Scholar
     

  • Guo L, Huang Z, Huang L, Liang J, Wang P, Zhao L, et al. Floor-modified engineered exosomes attenuated cerebral ischemia/reperfusion harm by concentrating on the supply of quercetin in direction of impaired neurons. J Nanobiotechnol. 2021;19:1–15.

    Article 

    Google Scholar
     

  • Deng Y, Duan R, Ding W, Gu Q, Liu M, Zhou J, et al. Astrocyte-derived exosomal nicotinamide phosphoribosyltransferase (Nampt) ameliorates ischemic stroke harm by concentrating on AMPK/mTOR signaling to induce autophagy. Cell Demise Dis. 2022;13(12):1057.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuo H-F, Liu P-L, Chong I-W, Liu Y-P, Chen Y-H, Ku P-M, et al. Pigment epithelium-derived issue mediates autophagy and apoptosis in myocardial hypoxia/reoxygenation harm. PLoS ONE. 2016;11(5):e0156059.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang X, Ding J, Li Y, Liu W, Ji J, Wang H, et al. Exosomes derived from PEDF modified adipose-derived mesenchymal stem cells ameliorate cerebral ischemia-reperfusion harm by regulation of autophagy and apoptosis. Exp Cell Res. 2018;371(1):269–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Z, Liang Y, Yu S. Downregulation of microRNA-103a reduces microvascular endothelial cell harm in a rat mannequin of cerebral ischemia by concentrating on AXIN2. J Cell Physiol. 2020;235(5):4720–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei R, Zhang L, Hu W, Shang X, He Y, Zhang W. Zeb2/Axin2-Enriched BMSC-derived exosomes promote post-stroke practical restoration by enhancing neurogenesis and neural plasticity. J Mol Neurosci. 2022;72:69–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC. Exosomal miRNAs in central nervous system illnesses: biomarkers, pathological mediators, protecting components and therapeutic brokers. Prog Neurobiol. 2019;183:101694.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Wu J, Wu J, Fan Q, Zhou J, Wu J, et al. Exosome-mediated focused supply of miR-210 for angiogenic remedy after cerebral ischemia in mice. J Nanobiotechnol. 2019;17:1–13.

    Article 

    Google Scholar
     

  • Hu H, Hu X, Li L, Fang Y, Yang Y, Gu J, et al. Exosomes derived from bone marrow mesenchymal stem cells promote angiogenesis in ischemic stroke mice through upregulation of MiR-21-5p. Biomolecules. 2022;12(7):883.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Liu J, Su M, Wang X, Xie C. Exosomal microRNA-22-3p alleviates cerebral ischemic harm by modulating KDM6B/BMP2/BMF axis. Stem Cell Res Ther. 2021;12:1–15.


    Google Scholar
     

  • Ling X, Zhang G, Xia Y, Zhu Q, Zhang J, Li Q, et al. Exosomes from human urine-derived stem cells enhanced neurogenesis through miR‐26a/HDAC6 axis after ischaemic stroke. J Cell Mol Med. 2020;24(1):640–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Zou X, Zhang R, Xie Y, Feng Z, Li F, et al. Human umbilical wire mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation through suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Growing older. 2021;13(2):3060.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Ok, Ru J, Zhang H, Chen J, Lin X, Lin Z, et al. Melatonin enhances the therapeutic impact of plasma exosomes towards cerebral ischemia-induced pyroptosis by the TLR4/NF-κB pathway. Entrance NeuroSci. 2020;14:848.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, Cai G, Liu Ok, Zhuang Z, Jia Ok, Pei S, et al. Microglia exosomal miRNA-137 attenuates ischemic mind harm by concentrating on Notch1. Growing older. 2021;13(3):4079.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tune Y, Li Z, He T, Qu M, Jiang L, Li W, et al. M2 microglia-derived exosomes defend the mouse mind from ischemia-reperfusion harm through exosomal miR-124. Theranostics. 2019;9(10):2910.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang H, Chen J. Bone marrow mesenchymal stem cell-derived exosomes carrying lengthy noncoding RNA ZFAS1 alleviate oxidative stress and irritation in ischemic stroke by inhibiting microRNA-15a-5p. Metab Mind Dis. 2022;37(7):2545–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao R, Wang Q, Peng J, Yu Z, Zhang J, Xia Y. BMSC-derived exosomal Egr2 ameliorates ischemic stroke by immediately upregulating SIRT6 to suppress notch signaling. Mol Neurobiol. 2023;60(1):1–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Wang H, Zhu Z, Feng J, Chen L. Exosome-shuttled circSHOC2 from IPASs regulates neuronal autophagy and ameliorates ischemic mind harm through the miR-7670-3p/SIRT1 axis. Mol Remedy-Nucleic Acids. 2020;22:657–72.

    Article 
    CAS 

    Google Scholar
     

  • Yang H, Tu Z, Yang D, Hu M, Zhou L, Li Q, et al. Exosomes from hypoxic pre-treated ADSCs attenuate acute ischemic stroke-induced mind harm through supply of circ-Rps5 and promote M2 microglia/macrophage polarization. Neurosci Lett. 2022;769:136389.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu W, Liu J, Yang C, Xu Z, Huang J, Lin J. Astrocyte-derived exosome-transported microRNA-34c is neuroprotective towards cerebral ischemia/reperfusion harm through TLR7 and the NF-κB/MAPK pathways. Mind Res Bull. 2020;163:84–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang M, Wang H, Jin M, Yang X, Ji H, Jiang Y, et al. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated mind harm by selling M2 microglial/macrophage polarization. Cell Physiol Biochem. 2018;47(2):864–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geng W, Tang H, Luo S, Lv Y, Liang D, Kang X, et al. Exosomes from miRNA-126-modified ADSCs promotes practical restoration after stroke in rats by enhancing neurogenesis and suppressing microglia activation. Am J Translational Res. 2019;11(2):780.

    CAS 

    Google Scholar
     

  • Kim M, Lee Y, Lee M. Hypoxia-specific anti-RAGE exosomes for nose-to-brain supply of anti-miR-181a oligonucleotide in an ischemic stroke mannequin. Nanoscale. 2021;13(33):14166–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xin H, Liu Z, Buller B, Li Y, Golembieski W, Gan X, et al. MiR-17-92 enriched exosomes derived from multipotent mesenchymal stromal cells improve axon-myelin reworking and motor electrophysiological restoration after stroke. J Cereb Blood Circulation Metabolism. 2021;41(5):1131–44.

    Article 
    CAS 

    Google Scholar
     

  • Fouad Ok, Popovich PG, Kopp MA, Schwab JM. The neuroanatomical-functional paradox in spinal wire harm. Nat Rev Neurol. 2021;17(1):53–62.

    Article 
    PubMed 

    Google Scholar
     

  • Gong W, Zhang T, Che M, Wang Y, He C, Liu L, et al. Latest advances in nanomaterials for the remedy of spinal wire harm. Mater As we speak Bio. 2023;18:100524.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, Yi H, Wu J, Kuang T, Zhang J, Li Q, et al. Therapeutic impact of berberine on metabolic illnesses: each pharmacological knowledge and scientific proof. Biomed Pharmacother. 2021;133:110984.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, Zhang L, Zhao Y, Xu B, Qin W, Yan Y, et al. Anti–inflammatory mechanism of berberine on lipopolysaccharide–induced IEC–18 fashions primarily based on comparative transcriptomics. Mol Med Rep. 2020;22(6):5163–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra G, Awasthi R, Singh AK, Singh S, Mishra SK, Singh SK, et al. Intranasally co-administered berberine and curcumin loaded in transfersomal vesicles improved inhibition of amyloid formation and BACE-1. ACS Omega. 2022;7(47):43290–305.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Z-S, Zhang C-J, Xia N, Tian H, Li D-Y, Lin J-Q, et al. Berberine-loaded M2 macrophage-derived exosomes for spinal wire harm remedy. Acta Biomater. 2021;126:211–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan H, Chen Z, Tang HB, Shan LQ, Chen ZY, Wang XH, et al. Exosomes derived from olfactory ensheathing cells supplied neuroprotection for spinal wire harm by switching the phenotype of macrophages/microglia. Bioeng Translational Med. 2022;7(2):e10287.

    Article 
    CAS 

    Google Scholar
     

  • Gullon B, Lú-Chau TA, Moreira MT, Lema JM, Eibes G, Rutin. A evaluation on extraction, identification and purification strategies, organic actions and approaches to reinforce its bioavailability. Developments Meals Sci Technol. 2017;67:220–35.

    Article 
    CAS 

    Google Scholar
     

  • Chen J, Wu J, Mu J, Li L, Hu J, Lin H, et al. An antioxidative sophora exosome-encapsulated hydrogel promotes spinal wire restore by regulating oxidative stress microenvironment. Nanomed Nanotechnol Biol Med. 2023;47:102625.

    Article 
    CAS 

    Google Scholar
     

  • Zhang C, Li D, Hu H, Wang Z, An J, Gao Z, et al. Engineered extracellular vesicles derived from main M2 macrophages with anti-inflammatory and neuroprotective properties for the remedy of spinal wire harm. J Nanobiotechnol. 2021;19(1):373.

    Article 
    CAS 

    Google Scholar
     

  • Fan Y, Li Y, Huang S, Xu H, Li H, Liu B. Resveratrol-primed exosomes strongly promote the restoration of motor perform in SCI rats by activating autophagy and inhibiting apoptosis through the PI3K signaling pathway. Neurosci Lett. 2020;736:135262.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan D, Zhu S, Zhang W, Wei Z, Yang F, Guo Z et al. Autophagy induced by Schwann cell-derived exosomes promotes restoration after spinal wire harm in rats. Biotechnol Lett. 2022:1–14.

  • Zhang C, Zhang C, Xu Y, Li C, Cao Y, Li P. Exosomes derived from human placenta-derived mesenchymal stem cells enhance neurologic perform by selling angiogenesis after spinal wire harm. Neurosci Lett. 2020;739:135399.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang J-H, He H, Chen Y-N, Liu Z, Romani MD, Xu Z-Y, et al. Exosomes derived from M2 macrophages enhance angiogenesis and practical restoration after spinal wire harm by HIF-1α/VEGF Axis. Mind Sci. 2022;12(10):1322.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowers DT, Olingy CE, Chhabra P, Langman L, Merrill PH, Linhart RS, et al. An engineered macroencapsulation membrane releasing FTY720 to precondition pancreatic islet transplantation. J Biomed Mater Res B Appl Biomater. 2018;106(2):555–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Zhang C, Li S, Li Z, Lai X, Xia Q. Exosomes derived from nerve stem cells loaded with FTY720 promote the restoration after Spinal Wire Harm in rats by PTEN/AKT Sign Pathway. J Immunol Res. 2021;2021:8100298.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and supply autos throughout organic membranes: present views and future challenges. Acta Pharm Sin B. 2016;6(4):287–96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carbone C, Piro G, Merz V, Simionato F, Santoro R, Zecchetto C, et al. Angiopoietin-like proteins in angiogenesis, irritation and most cancers. Int J Mol Sci. 2018;19(2):431.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao Y, Xu Y, Chen C, Xie H, Lu H, Hu J. Native supply of USC-derived exosomes harboring ANGPTL3 enhances spinal wire practical restoration after harm by selling angiogenesis. Stem Cell Res Ther. 2021;12:1–17.

    Article 

    Google Scholar
     

  • Mu J, Wu J, Cao J, Ma T, Li L, Feng S, et al. Fast and efficient remedy of traumatic spinal wire harm utilizing stem cell derived exosomes. Asian J Pharm Sci. 2021;16(6):806–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang D, Gong F, Ge X, Lv C, Huang C, Feng S, et al. Neuron-derived exosomes-transmitted mir-124-3p defend traumatically injured spinal wire by suppressing the activation of neurotoxic microglia and astrocytes. J Nanobiotechnol. 2020;18(1):1–20.

    Article 

    Google Scholar
     

  • Li R, Zhao Ok, Ruan Q, Meng C, Yin F. Bone marrow mesenchymal stem cell-derived exosomal microRNA-124-3p attenuates neurological harm in spinal wire ischemia-reperfusion harm by downregulating Ern1 and selling M2 macrophage polarization. Arthritis Res Remedy. 2020;22(1):1–14.

    Article 

    Google Scholar
     

  • Šuštić T, van Wageningen S, Bosdriesz E, Reid RJ, Dittmar J, Lieftink C, et al. A job for the unfolded protein response stress sensor ERN1 in regulating the response to MEK inhibitors in KRAS mutant colon cancers. Genome Med. 2018;10(1):1–13.

    Article 

    Google Scholar
     

  • Liu W, Rong Y, Wang J, Zhou Z, Ge X, Ji C, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells restore traumatic spinal wire harm by shifting microglial M1/M2 polarization. J Neuroinflamm. 2020;17(1):1–22.

    Article 

    Google Scholar
     

  • Xu G, Ao R, Zhi Z, Jia J, Yu B. miR-21 and miR‐19b delivered by hMSC‐derived EVs regulate the apoptosis and differentiation of neurons in sufferers with spinal wire harm. J Cell Physiol. 2019;234(7):10205–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang M, Wang L, Huang S, He X. Exosomes with excessive stage of miR-181c from bone marrow-derived mesenchymal stem cells inhibit irritation and apoptosis to alleviate spinal wire harm. J Mol Histol. 2021;52:301–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, et al. Intranasal supply of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs full spinal wire Harm. ACS Nano. 2019;13(9):10015–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, Todorova TI, et al. MicroRNA miR-133b is crucial for practical restoration after spinal wire harm in grownup zebrafish. Eur J Neurosci. 2011;33(9):1587–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li D, Zhang P, Yao X, Li H, Shen H, Li X, et al. Exosomes derived from miR-133b-modified mesenchymal stem cells promote restoration after spinal wire harm. Entrance NeuroSci. 2018;12:845.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Qin T, Liu Y, Wen H, Zhao J, Luo Z, et al. Microglia-derived exosomal microRNA-151-3p enhances practical therapeutic after spinal wire harm by attenuating neuronal apoptosis through regulating the p53/p21/CDK1 signaling pathway. Entrance Cell Dev Biology. 2022;9:783017.

    Article 

    Google Scholar
     

  • Yu T, Zhao C, Hou S, Zhou W, Wang B, Chen Y. Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal wire harm in rats. Braz J Med Biol Res. 2019;52.

  • Zhang A, Bai Z, Yi W, Hu Z, Hao J. Overexpression of mir-338-5p in exosomes derived from mesenchymal stromal cells gives neuroprotective results by the Cnr1/Rap1/Akt pathway after spinal wire harm in rats. Neurosci Lett. 2021;761:136124.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge X, Tang P, Rong Y, Jiang D, Lu X, Ji C, et al. Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and impairs mitochondrial perform through activating NF-κB signaling pathway in vascular endothelial cells after traumatic spinal wire harm. Redox Biol. 2021;41:101932.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattiske S, Suetani RJ, Neilsen PM, Callen DF. The oncogenic function of miR-155 in breast most cancers. Most cancers Epidemiol Biomarkers Prev. 2012;21(8):1236–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcucci G, Maharry KS, Metzeler KH, Volinia S, Wu YZ, Mrozek Ok, et al. Scientific function of microRNAs in cytogenetically regular acute myeloid leukemia: miR-155 upregulation independently identifies high-risk sufferers. J Clin Oncol. 2013;31(17):2086–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He X, Yang L, Dong Ok, Zhang F, Liu Y, Ma B, et al. Biocompatible exosome-modified fibrin gel accelerates the restoration of spinal wire harm by VGF-mediated oligodendrogenesis. J Nanobiotechnol. 2022;20(1):1–17.

    Article 

    Google Scholar
     

  • Diakou I, Papakonstantinou E, Papageorgiou L, Pierouli Ok, Dragoumani Ok, Spandidos DA, et al. A number of sclerosis and computational biology (evaluation). Biomed Rep. 2022;17(6):96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallin A, Kierkegaard M, Franzen E, Johansson S. Take a look at-retest reliability of the Mini-BESTest in folks with gentle to reasonable a number of sclerosis. Phys Ther. 2021;101(5).

  • Wu X-Y, Liao B-Y, Xiao D, Wu W-C, Xiao Y, Alexander T, et al. Encapsulation of bryostatin-1 by focused exosomes enhances remyelination and neuroprotection results within the cuprizone-induced demyelinating animal mannequin of a number of sclerosis. Biomaterials Sci. 2022;10(3):714–27.

    Article 
    CAS 

    Google Scholar
     

  • Chu F, Shi M, Zheng C, Shen D, Zhu J, Zheng X, et al. The roles of macrophages and microglia in a number of sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol. 2018;318:1–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng X, Solar Ok, Liu Y, Yin X, Zhu H, Yu F, et al. Resveratrol-loaded macrophage exosomes alleviate a number of sclerosis by concentrating on microglia. J Managed Launch. 2023;353:675–84.

    Article 
    CAS 

    Google Scholar
     

  • Haase S, Linker RA. Irritation in a number of sclerosis. Ther Adv Neurol Disord. 2021;14:17562864211007687.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Liu F, He X, Yang X, Shan F, Feng J. Exosomes derived from mesenchymal stem cells attenuate irritation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol. 2019;67:268–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riazifar M, Mohammadi MR, Pone EJ, Yeri A, Lasser C, Segaliny AI, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative issues. ACS Nano. 2019;13(6):6670–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni X, Castanares M, Mukherjee A, Lupold SE. Nucleic acid aptamers: scientific functions and promising new horizons. Curr Med Chem. 2011;18(27):4206–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fereidan-Esfahani M, Yue WY, Wilbanks B, Johnson AJ, Warrington AE, Howe CL et al. Remyelination-promoting DNA aptamer conjugate Myaptavin-3064 binds to grownup oligodendrocytes in Vitro. Prescribed drugs (Basel). 2020;13(11).

  • Shamili FH, Alibolandi M, Rafatpanah H, Abnous Ok, Mahmoudi M, Kalantari M, et al. Immunomodulatory properties of MSC-derived exosomes armed with excessive affinity aptamer towards mylein as a platform for lowering a number of sclerosis scientific rating. J Managed Launch. 2019;299:149–64.

    Article 

    Google Scholar
     

  • Wang Q, Cheng S, Qin F, Fu A, Fu C. Utility progress of RVG peptides to facilitate the supply of therapeutic brokers into the central nervous system. RSC Adv. 2021;11(15):8505–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai Y, Wang Q, Zhu Z, Hao Y, Han F, Hong J, et al. Excessive-efficiency brain-targeted intranasal supply of BDNF mediated by engineered exosomes to advertise remyelination. Biomaterials Sci. 2022;10(19):5707–18.

    Article 
    CAS 

    Google Scholar
     

  • Singh M, Agarwal V, Pancham P, Jindal D, Agarwal S, Rai SN et al. A Complete Overview and Androgen Deprivation Remedy and its influence on Alzheimer’s Illness Threat in older males with prostate Most cancers. Degenerative Neurol Neuromuscul Illness. 2024:33–46.

  • Chen Y-A, Lu C-H, Ke C-C, Chiu S-J, Jeng F-S, Chang C-W, et al. Mesenchymal stem cell-derived exosomes ameliorate Alzheimer’s illness pathology and enhance cognitive deficits. Biomedicines. 2021;9(6):594.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tripathi PN, Lodhi A, Rai SN, Nandi NK, Dumoga S, Yadav P et al. Overview of pharmacotherapeutic targets in Alzheimer’s Illness and its administration utilizing conventional Medicinal vegetation. Degenerative Neurol Neuromuscul Illness. 2024:47–74.

  • Huo Q, Shi Y, Qi Y, Huang L, Sui H, Zhao L. Biomimetic silibinin-loaded macrophage-derived exosomes induce twin inhibition of Aβ aggregation and astrocyte activation to alleviate cognitive impairment in a mannequin of Alzheimer’s illness. Mater Sci Engineering: C. 2021;129:112365.

    Article 
    CAS 

    Google Scholar
     

  • Qi Y, Guo L, Jiang Y, Shi Y, Sui H, Zhao L. Mind supply of quercetin-loaded exosomes improved cognitive perform in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. Drug Deliv. 2020;27(1):745–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Sui H, Zheng Y, Jiang Y, Shi Y, Liang J, et al. Curcumin-primed exosomes potently ameliorate cognitive perform in AD mice by inhibiting hyperphosphorylation of the tau protein by the AKT/GSK-3β pathway. Nanoscale. 2019;11(15):7481–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheykhhasan M, Amini R, Soleimani Asl S, Saidijam M, Hashemi SM, Najafi R. Neuroprotective results of coenzyme Q10-loaded exosomes obtained from adipose-derived stem cells in a rat mannequin of Alzheimer’s illness. Biomed Pharmacother. 2022;152:113224.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Fan M, Xu J-X, Yang L-J, Qi C-C, Xia Q-R, et al. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by enhancing BDNF-related neuropathology. J Neuroinflamm. 2022;19(1):35.

    Article 
    CAS 

    Google Scholar
     

  • Cui GH, Guo HD, Li H, Zhai Y, Gong ZB, Wu J, et al. RVG-modified exosomes derived from mesenchymal stem cells rescue reminiscence deficits by regulating inflammatory responses in a mouse mannequin of Alzheimer’s illness. Immun Ageing. 2019;16:10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai L, Shen H, Sheng Y, Guan Q. ADMSC Exo-MicroRNA-22 enhance neurological perform and neuroinflammation in mice with Alzheimer’s illness. J Cell Mol Med. 2021;25(15):7513–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakano M, Kubota Ok, Hashizume S, Kobayashi E, Chikenji TS, Saito Y, et al. An enriched setting prevents cognitive impairment in an Alzheimer’s illness mannequin by enhancing the secretion of exosomal microRNA-146a from the choroid plexus. Mind Behav Immun Well being. 2020;9:100149.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izco M, Carlos E, Alvarez-Erviti L. The 2 faces of exosomes in Parkinson’s illness: from pathology to remedy. Neuroscientist. 2022;28(2):180–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yadav SK, Rai SN, Singh SP. Mucuna pruriens reduces inducible nitric oxide synthase expression in parkinsonian mice mannequin. J Chem Neuroanat. 2017;80:1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rai SN, Singh P. Development within the modelling and therapeutics of Parkinson’s illness. J Chem Neuroanat. 2020;104:101752.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rai SN, Yadav SK, Singh D, Singh SP. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral exercise in MPTP-induced parkinsonian mouse mannequin. J Chem Neuroanat. 2016;71:41–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren X, Zhao Y, Xue F, Zheng Y, Huang H, Wang W, et al. Exosomal DNA aptamer concentrating on α-synuclein aggregates diminished neuropathological deficits in a mouse Parkinson’s illness mannequin. Mol Remedy-Nucleic Acids. 2019;17:726–40.

    Article 
    CAS 

    Google Scholar
     

  • Yang J, Luo S, Zhang J, Yu T, Fu Z, Zheng Y, et al. Exosome-mediated supply of antisense oligonucleotides concentrating on α-synuclein ameliorates the pathology in a mouse mannequin of Parkinson’s illness. Neurobiol Dis. 2021;148:105218.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu M, Lin Q, Huang L, Fu Y, Wang L, He S, et al. Dopamine-loaded blood exosomes focused to mind for higher remedy of Parkinson’s illness. J Managed Launch. 2018;287:156–66.

    Article 
    CAS 

    Google Scholar
     

  • Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug supply system: contemplating cell supply. Drug Supply. 2020;27(1):585–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo S, Solar X, Huang M, Ma Q, Du L, Cui Y. Enhanced neuroprotective results of epicatechin gallate encapsulated by bovine milk-derived exosomes towards Parkinson’s illness by antiapoptosis and antimitophagy. J Agric Meals Chem. 2021;69(17):5134–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, Li Y, Peng H, Liu R, Ji W, Shi Z, et al. Focused exosome coating gene-chem nanocomplex as nanoscavenger for clearing α-synuclein and immune activation of Parkinson’s illness. Sci Adv. 2020;6(50):eaba3967.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar T, Ding Z-X, Luo X, Liu Q-S, Cheng Y. Blood exosomes have neuroprotective results in a mouse mannequin of Parkinson’s illness. Oxidative medication and mobile longevity. 2020;2020.

  • Xue C, Li X, Ba L, Zhang M, Yang Y, Gao Y, et al. MSC-derived exosomes can improve the angiogenesis of human mind MECs and present therapeutic potential in a mouse mannequin of Parkinson’s illness. Growing older Illness. 2021;12(5):1211.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shakespear N, Ogura M, Yamaki J, Homma Y. Astrocyte-derived exosomal microRNA miR-200a-3p prevents MPP+-induced apoptotic cell loss of life by down-regulation of MKK4. Neurochem Res. 2020;45:1020–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Q, Wang Z, Xing H, Wang Y, Guo Y. Exosomes derived from mir-188-3p-modified adipose-derived mesenchymal stem cells defend Parkinson’s illness. Mol Remedy-Nucleic Acids. 2021;23:1334–44.

    Article 
    CAS 

    Google Scholar
     

  • Kojima R, Bojar D, Rizzi G, Hamri GC-E, El-Baba MD, Saxena P, et al. Designer exosomes produced by implanted cells intracerebrally ship therapeutic cargo for Parkinson’s illness remedy. Nat Commun. 2018;9(1):1305.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izco M, Blesa J, Schleef M, Schmeer M, Porcari R, Al-Shawi R, et al. Systemic exosomal supply of shRNA minicircles prevents parkinsonian pathology. Mol Ther. 2019;27(12):2111–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Li Z, Gu J, Xu X, Chen H, Gui Y. Exosomes remoted throughout dopaminergic neuron differentiation suppressed neuronal irritation in a rodent mannequin of Parkinson’s illness. Neurosci Lett. 2022;771:136414.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Li Y, Xu X, Gu J, Chen H, Gui Y. Exosomes wealthy in Wnt5 improved circadian rhythm dysfunction through enhanced PPARγ exercise within the 6-hydroxydopamine mannequin of Parkinson’s illness. Neurosci Lett. 2023;802:137139.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, Li Z, Zuo H, Chen H, Gui Y. Mesenchymal stem cell-derived exosomes altered neuron ldl cholesterol metabolism through Wnt5a-LRP1 axis and alleviated cognitive impairment in a progressive Parkinson’s Illness mannequin. Neurosci Lett. 2022;787:136810.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • (2020) Exosomal miRNA-320a Is Launched from hAMSCs and Regulates SIRT4 to Stop Reactive Oxygen Species Technology in POI Molecular Remedy – Nucleic Acids 2137-50 10.1016/j.omtn.2020.05.013

  • Leave a Reply

    Your email address will not be published. Required fields are marked *