Bates GW, Bowling M. Physiology of the feminine reproductive axis. Periodontol 2000. 2013;61:89–102.
Weimar CH, Publish Uiterweer ED, Teklenburg G, Heijnen CJ, Macklon NS. In-vitro mannequin programs for the research of human embryo-endometrium interactions. Reprod Biomed On-line. 2013;27:461–76.
Duval Ok, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z. Modeling physiological occasions in 2D vs. 3D cell tradition. Physiol (Bethesda). 2017;32:266–77.
Mazure CM, Jones DP. Twenty years and nonetheless counting: together with ladies as individuals and finding out intercourse and gender in biomedical analysis. BMC Womens Well being. 2015;15:94.
Grimm MJ. Engineering and girls’s well being: a sluggish begin, however gaining momentum. Interface Focus. 2019;9:20190017.
Clevers H. Modeling Growth and Illness with Organoids. Cell. 2016;165:1586–97.
Sosa-Hernandez JE, Villalba-Rodriguez AM, Romero-Castillo KD, Aguilar-Aguila-Isaias MA, Garcia-Reyes IE, Hernandez-Antonio A, Ahmed I, Sharma A, Parra-Saldivar R, Iqbal HMN. Organs-on-a-Chip Module: a assessment from the Growth and Functions Perspective. Micromachines (Basel) 2018, 9.
Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the following decade. Nat Rev Drug Discov. 2021;20:345–61.
Hernsdorf AW, Amano Y, Miyakawa Ok, Ise Ok, Suzuki Y, Anantharaman Ok, Probst A, Burstein D, Thomas BC, Banfield JF. Potential for microbial H(2) and metallic transformations related to novel micro organism and archaea in deep terrestrial subsurface sediments. ISME J. 2017;11:1915–29.
Mandrycky CJ, Howard CC, Rayner SG, Shin YJ, Zheng Y. Organ-on-a-chip programs for vascular biology. J Mol Cell Cardiol. 2021;159:1–13.
Beckwitt CH, Clark AM, Wheeler S, Taylor DL, Stolz DB, Griffith L, Wells A. Liver ‘organ on a chip’. Exp Cell Res. 2018;363:15–25.
Younger RE, Huh DD. Organ-on-a-chip know-how for the research of the feminine reproductive system. Adv Drug Deliv Rev. 2021;173:461–78.
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung capabilities on a chip. Science. 2010;328:1662–8.
Chen Z, Dai Y, Dong Z, Li M, Mu X, Zhang R, Wang Z, Zhang W, Lang J, Leng J, Jiang X. Co-cultured endometrial stromal cells and peritoneal mesothelial cells for an in vitro mannequin of endometriosis. Integr Biol (Camb). 2012;4:1090–5.
Li W-X, Liang G-T, Yan W, Zhang Q, Wang W, Zhou X-M, Liu D-Y. 2013, – 41:- 472.
Lee JS, Romero R, Han YM, Kim HC, Kim CJ, Hong JS, Huh D. Placenta-on-a-chip: a novel platform to check the biology of the human placenta. J Matern Fetal Neonatal Med. 2016;29:1046–54.
Xiao S, Coppeta JR, Rogers HB, Isenberg BC, Zhu J, Olalekan SA, McKinnon KE, Dokic D, Rashedi AS, Haisenleder DJ, et al. A microfluidic tradition mannequin of the human reproductive tract and 28-day menstrual cycle. Nat Commun. 2017;8:14584.
Ferraz M, Rho HS, Hemerich D, Henning HHW, van Tol HTA, Holker M, Besenfelder U, Mokry M, Vos P, Stout TAE, et al. An oviduct-on-a-chip offers an enhanced in vitro atmosphere for zygote genome reprogramming. Nat Commun. 2018;9:4934.
Saha B, Mathur T, Handley KF, Hu W, Afshar-Kharghan V, Sood AK, Jain A. OvCa-Chip microsystem recreates vascular endothelium-mediated platelet extravasation in ovarian most cancers. Blood Adv. 2020;4:3329–42.
Jensen C, Teng Y. Is it Time to begin transitioning from 2D to 3D cell tradition? Entrance Mol Biosci. 2020;7:33.
Parasrampuria DA, Benet LZ, Sharma A. Why medication fail in late levels of improvement: case research analyses from the final decade and suggestions. AAPS J. 2018;20:46.
Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD. 3D cell tradition programs: benefits and functions. J Cell Physiol. 2015;230:16–26.
Bialkowska Ok, Komorowski P, Bryszewska M, Milowska Ok. Spheroids as a sort of three-dimensional cell cultures-examples of strategies of Preparation and crucial utility. Int J Mol Sci 2020, 21.
Yoo J, Jung Y, Char Ok, Jang Y. Advances in cell coculture membranes recapitulating in vivo microenvironments. Tendencies Biotechnol. 2023;41:214–27.
Vila-Parrondo C, Garcia-Astrain C, Liz-Marzan LM. Colloidal programs towards 3D cell tradition scaffolds. Adv Colloid Interface Sci. 2020;283:102237.
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D cell Tradition programs: Tumor Software, benefits, and downsides. Int J Mol Sci 2021, 22.
Robinson NB, Krieger Ok, Khan FM, Huffman W, Chang M, Naik A, Yongle R, Hameed I, Krieger Ok, Girardi LN, Gaudino M. The present state of animal fashions in analysis: a assessment. Int J Surg. 2019;72:9–13.
Landi M, Everitt J, Berridge B. Bioethical, reproducibility, and Translational challenges of Animal fashions. ILAR J. 2021;62:60–5.
Jalili-Firoozinezhad S, Miranda CC, Cabral JMS. Modeling the human physique on microfluidic chips. Tendencies Biotechnol. 2021;39:838–52.
Ma C, Peng Y, Li H, Chen W. Organ-on-a-Chip: a New Paradigm for Drug Growth. Tendencies Pharmacol Sci. 2021;42:119–33.
Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G, Maruccio G. Organs-on-chips applied sciences – a information from illness fashions to alternatives for drug improvement. Biosens Bioelectron. 2023;231:115271.
Hsueh AJ, Kawamura Ok, Cheng Y, Fauser BC. Intraovarian management of early folliculogenesis. Endocr Rev. 2015;36:1–24.
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: parallels with inflammatory processes. Endocr Rev. 2019;40:369–416.
Mikhael S, Punjala-Patel A, Gavrilova-Jordan L. Hypothalamic-pituitary-ovarian Axis problems Impacting Feminine Fertility. Biomedicines 2019, 7.
Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M. Microfluidic organ-on-a-chip fashions of human liver tissue. Acta Biomater. 2020;116:67–83.
Shrestha J, Razavi Bazaz S, Aboulkheyr Es H, Yaghobian Azari D, Thierry B, Ebrahimi Warkiani M, Ghadiri M. Lung-on-a-chip: the way forward for respiratory illness fashions and pharmacological research. Crit Rev Biotechnol. 2020;40:213–30.
Ashammakhi N, Wesseling-Perry Ok, Hasan A, Elkhammas E, Zhang YS. Kidney-on-a-chip: untapped alternatives. Kidney Int. 2018;94:1073–86.
Paloschi V, Sabater-Lleal M, Middelkamp H, Vivas A, Johansson S, van der Meer A, Tenje M, Maegdefessel L. Organ-on-a-chip know-how: a novel strategy to analyze cardiovascular illnesses. Cardiovasc Res. 2021;117:2742–54.
Puschhof J, Pleguezuelos-Manzano C, Clevers H. Organoids and organs-on-chips: insights into human gut-microbe interactions. Cell Host Microbe. 2021;29:867–78.
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A assessment on biomaterials for ovarian tissue engineering. Acta Biomater. 2021;135:48–63.
Goswami D, Conway GS. Untimely ovarian failure. Hum Reprod Replace. 2005;11:391–410.
Choi JK, Agarwal P, Huang H, Zhao S, He X. The essential position of mechanical heterogeneity in regulating follicle improvement and ovulation with engineered ovarian microtissue. Biomaterials. 2014;35:5122–8.
Aziz AUR, Fu M, Deng J, Geng C, Luo Y, Lin B, Yu X, Liu B. A microfluidic gadget for culturing an encapsulated ovarian follicle. Micromachines (Basel) 2017, 8.
Aziz AUR, Yu X, Jiang Q, Zhao Y, Deng S, Qin Ok, Wang H, Liu B. Doxorubicin-induced toxicity to 3D-cultured rat ovarian follicles on a microfluidic chip. Toxicol Vitro. 2020;62:104677.
Li H, Garner T, Diaz F, Wong PK. A Multiwell Microfluidic gadget for analyzing and screening nonhormonal contraceptive brokers. Small. 2019;15:e1901910.
Nagashima JB, El Assal R, Songsasen N, Demirci U. Analysis of an ovary-on-a-chip in massive mammalian fashions: species specificity and affect of follicle isolation standing. J Tissue Eng Regen Med. 2018;12:e1926–35.
Chumduri C, Turco MY. Organoids of the feminine reproductive tract. J Mol Med (Berl). 2021;99:531–53.
Ghorbani S, Eyni H, Norahan MH, Zarrintaj P, City N, Mohammadzadeh A, Mostafavi E, Sutherland DS. Superior bioengineering of feminine germ cells to protect fertility. Biol Reprod. 2022;107:1177–204.
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32:760–72.
Lyons RA, Saridogan E, Djahanbakhch O. The reproductive significance of human fallopian tube cilia. Hum Reprod Replace. 2006;12:363–72.
Eddy CA, Pauerstein CJ. Anatomy and physiology of the fallopian tube. Clin Obstet Gynecol. 1980;23:1177–93.
Ferraz M, Henning HHW, Costa PF, Malda J, Melchels FP, Wubbolts R, Stout TAE, Vos P, Gadella BM. Improved bovine embryo manufacturing in an oviduct-on-a-chip system: prevention of poly-spermic fertilization and parthenogenic activation. Lab Chip. 2017;17:905–16.
Wang M, Zhu T, Liu C, Jin L, Fei P, Zhang B. Oviduct-mimicking microfluidic chips decreased the ROS focus within the in vitro fertilized embryos of CD-1 mice. Biomed Pharmacother. 2022;154:113567.
Jackson-Bey T, Colina J, Isenberg BC, Coppeta J, Urbanek M, Kim JJ, Woodruff TK, Burdette JE, Russo A. Publicity of human fallopian tube epithelium to elevated testosterone ends in alteration of cilia gene expression and beating. Hum Reprod. 2020;35:2086–96.
Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo improvement. J Endocrinol. 2017;232:R1–26.
Zhu J, Xu Y, Rashedi AS, Pavone ME, Kim JJ, Woodruff TK, Burdette JE. Human fallopian tube epithelium co-culture with murine ovarian follicles reveals crosstalk within the reproductive cycle. Mol Hum Reprod. 2016;22:756–67.
Bhagwat S, Sontakke S, Parte KD, Jadhav P. Chemotactic conduct of spermatozoa captured utilizing a microfluidic chip. Biomicrofluidics. 2018;12:024112.
Bhagwat S, Sontakke S, Desai S, Panchal D, Jadhav S, Parte P. N-formyl-l-aspartate: a novel sperm chemoattractant recognized in ovulatory part oviductal fluid utilizing a microfluidic chip. Andrology. 2021;9:1214–26.
Yu SX, Wu Y, Luo H, Liu Y, Chen YC, Wang YJ, Liu W, Tang J, Shi H, Gao H, et al. Escaping Conduct of sperms on the Biomimetic Oviductal Floor. Anal Chem. 2023;95:2366–74.
Leemans B, Bromfield EG, Stout TAE, Vos M, Van Der Ham H, Van Beek R, Van Soom A, Gadella BM, Henning H. Creating a reproducible protocol for culturing useful confluent monolayers of differentiated equine oviduct epithelial cellsdagger. Biol Reprod. 2022;106:710–29.
Chang Ok-W, Chang P-Y, Huang H-Y, Li C-J, Tien C-H, Yao D-J, Fan S-Ok, Hsu W, Liu. C-H: 2016, – 226:- 226.
Ng SW, Norwitz GA, Pavlicev M, Tilburgs T, Simon C, Norwitz ER. Endometrial decidualization: the first driver of being pregnant well being. Int J Mol Sci 2020, 21.
Gnecco JS, Pensabene V, Li DJ, Ding T, Hui EE, Bruner-Tran KL, Osteen KG. Compartmentalized Tradition of Perivascular Stroma and endothelial cells in a microfluidic mannequin of the human endometrium. Ann Biomed Eng. 2017;45:1758–69.
Gnecco JS, Ding T, Smith C, Lu J, Bruner-Tran KL, Osteen KG. Hemodynamic forces improve decidualization by way of endothelial-derived prostaglandin E2 and prostacyclin in a microfluidic mannequin of the human endometrium. Hum Reprod. 2019;34:702–14.
Ahn J, Yoon MJ, Hong SH, Cha H, Lee D, Koo HS, Ko JE, Lee J, Oh S, Jeon NL, Kang YJ. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum Reprod. 2021;36:2720–31.
Oghbaei F, Zarezadeh R, Jafari-Gharabaghlou D, Ranjbar M, Nouri M, Fattahi A, Imakawa Ok. Epithelial-mesenchymal transition course of throughout embryo implantation. Cell Tissue Res. 2022;388:1–17.
Niringiyumukiza JD, Cai H, Xiang W. Prostaglandin E2 involvement in mammalian feminine fertility: ovulation, fertilization, embryo improvement and early implantation. Reprod Biol Endocrinol. 2018;16:43.
Park SR, Kim SR, Lee JW, Park CH, Yu WJ, Lee SJ, Chon SJ, Lee DH, Hong IS. Growth of a novel twin reproductive organ on a chip: recapitulating bidirectional endocrine crosstalk between the uterine endometrium and the ovary. Biofabrication 2020, 13.
Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, Bhushan BM, Freake D, Kirschner J, Maass C, Tsamandouras N, et al. Interconnected Microphysiological programs for quantitative Biology and Pharmacology research. Sci Rep. 2018;8:4530.
Esch MB, Smith AS, Prot JM, Oleaga C, Hickman JJ, Shuler ML. How multi-organ microdevices may also help foster drug improvement. Adv Drug Deliv Rev. 2014;69–70:158–69.
Martyn F, McAuliffe FM, Wingfield M. The position of the cervix in fertility: is it time for a reappraisal? Hum Reprod. 2014;29:2092–8.
Lacroix G, Gouyer V, Gottrand F, Desseyn JL. The Cervicovaginal mucus barrier. Int J Mol Sci 2020, 21.
Tantengco OAG, Richardson LS, Medina PMB, Han A, Menon R. Organ-on-chip of the cervical epithelial layer: a platform to check regular and pathological mobile transforming of the cervix. FASEB J. 2021;35:e21463.
Tantengco OAG, Richardson LS, Radnaa E, Kammala AK, Kim S, Medina PMB, Han A, Menon R. Modeling ascending Ureaplasma parvum an infection by way of the feminine reproductive tract utilizing vagina-cervix-decidua-organ-on-a-chip and feto-maternal interface-organ-on-a-chip. FASEB J 2022, 36:e22551.
Tantengco OAG, Richardson LS, Radnaa E, Kammala AK, Kim S, Medina PMB, Han A, Menon R. Exosomes from Ureaplasma parvum-infected ectocervical epithelial cells promote feto-maternal interface irritation however are inadequate to trigger preterm supply. Entrance Cell Dev Biol. 2022;10:931609.
Buggio L, Somigliana E, Borghi A, Vercellini P. Probiotics and vaginal microecology: reality or fancy? BMC Womens Well being. 2019;19:25.
Mahajan G, Doherty E, To T, Sutherland A, Grant J, Junaid A, Gulati A, LoGrande N, Izadifar Z, Timilsina SS, et al. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome. 2022;10:201.
Izadifar Z, Sontheimer-Phelps A, Lubamba BA, Bai H, Fadel C, Stejskalova A, Ozkan A, Dasgupta Q, Bein A, Junaid A, et al. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv Drug Deliv Rev. 2022;191:114542.
Yu SX, Liu Y, Wu Y, Luo H, Huang R, Wang YJ, Wang X, Gao H, Shi H, Jing G, Liu YJ. Cervix chip mimicking cervical microenvironment for quantifying sperm locomotion. Biosens Bioelectron. 2022;204:114040.
Knofler M, Pollheimer J. IFPA Award in Placentology lecture: molecular regulation of human trophoblast invasion. Placenta. 2012;33(Suppl):S55–62.
Maltepe E, Fisher SJ. Placenta: the forgotten organ. Annu Rev Cell Dev Biol. 2015;31:523–52.
Moffett A, Loke C. Immunology of placentation in eutherian mammals. Nat Rev Immunol. 2006;6:584–94.
Huang X, Luthi M, Ontsouka EC, Kallol S, Baumann MU, Surbek DV, Albrecht C. Institution of a confluent monolayer mannequin with human major trophoblast cells: novel insights into placental glucose transport. Mol Hum Reprod. 2016;22:442–56.
Elad D, Levkovitz R, Jaffa AJ, Desoye G, Hod M. Have we uncared for the position of fetal endothelium in transplacental transport? Visitors. 2014;15:122–6.
Ma T, Yang ST, Kniss DA. Growth of an in vitro human placenta mannequin by the cultivation of human trophoblasts in a fiber-based bioreactor system. Tissue Eng. 1999;5:91–102.
Mosavati B, Oleinikov AV, Du E. Growth of an organ-on-a-chip-device for research of placental pathologies. Int J Mol Sci 2020, 21.
Blundell C, Tess ER, Schanzer AS, Coutifaris C, Su EJ, Parry S, Huh D. A microphysiological mannequin of the human placental barrier. Lab Chip. 2016;16:3065–73.
Blundell C, Yi YS, Ma L, Tess ER, Farrell MJ, Georgescu A, Aleksunes LM, Huh D. Placental drug transport-on-a-Chip: a Microengineered in Vitro Mannequin of transporter-mediated drug efflux within the human placental barrier. Adv Healthc Mater 2018, 7.
Pemathilaka RL, Caplin JD, Aykar SS, Montazami R, Hashemi NN. Placenta-on-a-Chip: in Vitro Research of Caffeine Transport throughout placental barrier utilizing Liquid Chromatography Mass Spectrometry. Glob Chall. 2019;3:1800112.
Richardson LS, Costantine AKK, Fortunato MM, Radnaa SJ, Kim E, Taylor S, Han RN, Menon A. Testing of medication utilizing human feto-maternal interface organ-on-chips present insights into pharmacokinetics and efficacy. Lab Chip. 2022;22:4574–92.
West RC, Ming H, Logsdon DM, Solar J, Rajput SK, Kile RA, Schoolcraft WB, Roberts RM, Krisher RL, Jiang Z, Yuan Y. Dynamics of trophoblast differentiation in peri-implantation-stage human embryos. Proc Natl Acad Sci U S A. 2019;116:22635–44.
Mess AM, Ferner KJ. Evolution and improvement of gasoline alternate buildings in Mammalia: the placenta and the lung. Respir Physiol Neurobiol. 2010;173(Suppl):S74–82.
Dabaghi M, Fusch G, Saraei N, Rochow N, Brash JL, Fusch C, Ravi Selvaganapathy P. A man-made placenta kind microfluidic blood oxygenator with double-sided gasoline switch microchannels and its integration as a neonatal lung help gadget. Biomicrofluidics. 2018;12:044101.
Rabussier G, Bunter I, Bouwhuis J, Soragni C, van Zijp T, Ng CP, Domansky Ok, de Windt LJ, Vulto P, Murdoch CE, et al. Wholesome and diseased placental barrier on-a-chip fashions appropriate for standardized research. Acta Biomater. 2023;164:363–76.
Pemathilaka RL, Reynolds DE, Hashemi NN. Drug transport throughout the human placenta: assessment of placenta-on-a-chip and former approaches. Interface Focus. 2019;9:20190031.
Yin F, Zhu Y, Zhang M, Yu H, Chen W, Qin J. A 3D human placenta-on-a-chip mannequin to probe nanoparticle publicity on the placental barrier. Toxicol Vitro. 2019;54:105–13.
Schuller P, Rothbauer M, Kratz SRA, Höll G, Taus P, Schinnerl M, Genser J, Bastus N, Moriones OH, Puntes V. : 2020, – 312.
Abostait A, Tyrrell J, Abdelkarim M, Shojaei S, Tse WH, El-Sherbiny IM, Keijzer R, Labouta HI. Placental nanoparticle Uptake-On-a-Chip: the affect of trophoblast syncytialization and shear stress. Mol Pharm. 2022;19:3757–69.
Shojaei S, Ali MS, Suresh M, Upreti T, Mogourian V, Helewa M, Labouta HI. Dynamic placenta-on-a-chip mannequin for fetal threat evaluation of nanoparticles meant to deal with pregnancy-associated illnesses. Biochim Biophys Acta Mol Foundation Dis. 2021;1867:166131.
Arumugasaamy N, Rock KD, Kuo CY, Bale TL, Fisher JP. Microphysiological programs of the placental barrier. Adv Drug Deliv Rev. 2020;161–162:161–75.
Sood A, Kumar A, Gupta VK, Kim CM, Han SS. Translational nanomedicines Throughout Human Reproductive organs modeling on microfluidic chips: state-of-the-art and future prospects. ACS Biomater Sci Eng. 2023;9:62–84.
Ashary N, Tiwari A, Modi D. Embryo implantation: Battle in Occasions of Love. Endocrinology. 2018;159:1188–98.
Abbas Y, Turco MY, Burton GJ, Moffett A. Investigation of human trophoblast invasion in vitro. Hum Reprod Replace. 2020;26:501–13.
Miura S, Sato Ok, Kato-Negishi M, Teshima T, Takeuchi S. Fluid shear triggers microvilli formation by way of mechanosensitive activation of TRPV6. Nat Commun. 2015;6:8871.
Abbas Y, Oefner CM, Polacheck WJ, Gardner L, Farrell L, Sharkey A, Kamm R, Moffett A, Oyen ML. A microfluidics assay to check invasion of human placental trophoblast cells. J R Soc Interface 2017, 14.
Pu Y, Gingrich J, Veiga-Lopez A. A three-d microfluidic platform for modeling human extravillous trophoblast invasion and toxicological screening. Lab Chip. 2021;21:546–57.
Deng P, Cui Ok, Shi Y, Zhu Y, Wang Y, Shao X, Qin J. Fluidic Move enhances the differentiation of placental trophoblast-like 3D tissue from hiPSCs in a perfused macrofluidic gadget. Entrance Bioeng Biotechnol. 2022;10:907104.
Cao R, Wang Y, Liu J, Rong L, Qin J. Self-assembled human placental mannequin from trophoblast stem cells in a dynamic organ-on-a-chip system. Cell Prolif. 2023;56:e13469.
Murtha AP, Menon R. Regulation of fetal membrane irritation: a important step in decreasing adversarial being pregnant consequence. Am J Obstet Gynecol. 2015;213:447–8.
Phillips C, Velji Z, Hanly C, Metcalfe A. Danger of recurrent spontaneous preterm beginning: a scientific assessment and meta-analysis. BMJ Open. 2017;7:e015402.
Jung E, Romero R, Yeo L, Diaz-Primera R, Marin-Concha J, Para R, Lopez AM, Pacora P, Gomez-Lopez N, Yoon BH, et al. The fetal inflammatory response syndrome: the origins of an idea, pathophysiology, prognosis, and obstetrical implications. Semin Fetal Neonatal Med. 2020;25:101146.
Tomlinson MS, Lu Ok, Stewart JR, Marsit CJ, O’Shea TM, Fry RC. Microorganisms within the Placenta: hyperlinks to early-life irritation and neurodevelopment in youngsters. Clin Microbiol Rev 2019, 32.
Gnecco JS, Anders AP, Cliffel D, Pensabene V, Rogers LM, Osteen Ok, Aronoff DM. Instrumenting a fetal membrane on a chip as Rising Know-how for Preterm Start Analysis. Curr Pharm Des. 2017;23:6115–24.
Zhu Y, Yin F, Wang H, Wang L, Yuan J, Qin J. Placental barrier-on-a-Chip: modeling placental inflammatory responses to bacterial an infection. ACS Biomater Sci Eng. 2018;4:3356–63.
Mosavati B, Oleinikov A, Du E. 3D microfluidics-assisted modeling of glucose transport in placental malaria. Sci Rep. 2022;12:15278.
Richardson L, Jeong S, Kim S, Han A, Menon R. Amnion membrane organ-on-chip: an progressive strategy to check mobile interactions. FASEB J. 2019;33:8945–60.
Richardson L, Gnecco J, Ding T, Osteen Ok, Rogers LM, Aronoff DM, Menon R. Fetal membrane Organ-On-Chip: an progressive Strategy to Research Mobile interactions. Reprod Sci. 2020;27:1562–9.
Richardson LS, Kim S, Han A, Menon R. Modeling ascending an infection with a feto-maternal interface organ-on-chip. Lab Chip. 2020;20:4486–501.
Kim S, Richardson L, Radnaa E, Chen Z, Rusyn I, Menon R, Han A. Molecular mechanisms of environmental toxin cadmium on the feto-maternal interface investigated utilizing an organ-on-chip (FMi-OOC) mannequin. J Hazard Mater. 2022;422:126759.
Richardson LS, Kammala AK, Kim S, Lam PY, Truong N, Radnaa E, Urrabaz-Garza R, Han A, Menon R. Growth of oxidative stress-associated illness fashions utilizing feto-maternal interface organ-on-a-chip. FASEB J. 2023;37:e23000.
Richardson LS, Emezienna N, Burd I, Taylor BD, Peltier MR, Han A, Menon R. Adapting an organ-on-chip gadget to check the impact of fetal intercourse and maternal race/ethnicity on preterm beginning associated intraamniotic irritation resulting in fetal neuroinflammation. Am J Reprod Immunol. 2022;88:e13638.
Yin F, Zhu Y, Wang H, Wang Y, Li D, Qin J. Microengineered hiPSC-Derived 3D amnion tissue mannequin to probe amniotic inflammatory responses beneath bacterial publicity. ACS Biomater Sci Eng. 2020;6:4644–52.
Cannistra SA. Most cancers of the ovary. N Engl J Med. 2004;351:2519–29.
Ishiguro T, Sato A, Ohata H, Ikarashi Y, Takahashi RU, Ochiya T, Yoshida M, Tsuda H, Onda T, Kato T, et al. Institution and characterization of an in vitro mannequin of Ovarian Most cancers stem-like cells with an enhanced proliferative capability. Most cancers Res. 2016;76:150–60.
Parrish J, Lim KS, Baer Ok, Hooper GJ, Woodfield TBF. A 96-well microplate bioreactor platform supporting particular person twin perfusion and high-throughput evaluation of straightforward or biofabricated 3D tissue fashions. Lab Chip. 2018;18:2757–75.
Dorayappan KDP, Gardner ML, Hisey CL, Zingarelli RA, Smith BQ, Lightfoot MDS, Gogna R, Flannery MM, Hays J, Hansford DJ, et al. A microfluidic chip permits isolation of Exosomes and Institution of their protein profiles and Related Signaling pathways in Ovarian Most cancers. Most cancers Res. 2019;79:3503–13.
Zhang P, Zhou X, He M, Shang Y, Tetlow AL, Godwin AK, Zeng Y. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng. 2019;3:438–51.
Saha B, Mathur T, Tronolone JJ, Chokshi M, Lokhande GK, Selahi A, Gaharwar AK, Afshar-Kharghan V, Sood AK, Bao G, Jain A. Human tumor microenvironment chip evaluates the results of platelet extravasation and combinatorial antitumor-antiplatelet remedy in ovarian most cancers. Sci Adv 2021, 7.
Fedi A, Vitale C, Fato M, Scaglione S. A human ovarian tumor & liver organ-on-chip for simultaneous and extra predictive toxo-efficacy assays. Bioeng (Basel) 2023, 10.
Lin SF, Gerry E, Shih IM. Tubal origin of ovarian most cancers – the double-edged sword of haemoglobin. J Pathol. 2017;242:3–6.
de Ferraz AMM, Nagashima M, Venzac JB, Le Gac B, Songsasen S. A canine oviduct-on-a-chip mannequin of serous tubal intraepithelial carcinoma. Sci Rep. 2020;10:1575.
Kim GJ, Lee KJ, Choi JW, An JH. Drug analysis primarily based on a multi-channel cell chip with a horizontal co-culture. Int J Mol Sci 2021, 22.
Chapron C, Marcellin L, Borghese B, Santulli P. Rethinking mechanisms, prognosis and administration of endometriosis. Nat Rev Endocrinol. 2019;15:666–82.
Tirado-Gonzalez I, Barrientos G, Tariverdian N, Arck PC, Garcia MG, Klapp BF, Blois SM. Endometriosis analysis: animal fashions for the research of a fancy illness. J Reprod Immunol. 2010;86:141–7.
Malvezzi H, Marengo EB, Podgaec S, Piccinato CA. Endometriosis: present challenges in modeling a multifactorial illness of unknown etiology. J Transl Med. 2020;18:311.
Chen CH, Miller MA, Sarkar A, Beste MT, Isaacson KB, Lauffenburger DA, Griffith LG, Han J. Multiplexed protease exercise assay for low-volume scientific samples utilizing droplet-based microfluidics and its utility to endometriosis. J Am Chem Soc. 2013;135:1645–8.
Kapur A, Ayuso JM, Rehman S, Kumari S, Felder M, Stenerson Z, Skala MC, Beebe D, Barroilhet L, Patankar MS. Oxidative phosphorylation inhibitors inhibit proliferation of endometriosis cells. Copy. 2023;165:617–28.
Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, Hollinshead M, Marsh SGE, Brosens JJ, Critchley HO, et al. Lengthy-term, hormone-responsive organoid cultures of human endometrium in a chemically outlined medium. Nat Cell Biol. 2017;19:568–77.
Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: pathophysiology, challenges, and views. Circ Res. 2019;124:1094–112.
Roland CS, Hu J, Ren CE, Chen H, Li J, Varvoutis MS, Leaphart LW, Byck DB, Zhu X, Jiang SW. Morphological adjustments of placental syncytium and their implications for the pathogenesis of preeclampsia. Cell Mol Life Sci. 2016;73:365–76.
Luscher BP, Marini C, Joerger-Messerli MS, Huang X, Hediger MA, Albrecht C, Baumann MU, Surbek DV. Placental glucose transporter (GLUT)-1 is down-regulated in preeclampsia. Placenta. 2017;55:94–9.
Wang A, Rana S, Karumanchi SA. Preeclampsia: the position of angiogenic elements in its pathogenesis. Physiol (Bethesda). 2009;24:147–58.
Pattanayak P, Singh SK, Gulati M, Vishwas S, Kapoor B, Chellappan DK, Anand Ok, Gupta G, Jha NK, Gupta PK, et al. Microfluidic chips: current advances, important methods in design, functions and future views. Microfluid Nanofluidics. 2021;25:99.
Rowinska M, Kelleher SM, Soberon F, Ricco AJ, Daniels S. Fabrication and characterisation of spin coated oxidised PMMA to supply a sturdy floor for on-chip assays. J Mater Chem B. 2015;3:135–43.
Nittala PVK, Hohreiter A, Rosas Linhard E, Dohn R, Mishra S, Konda A, Divan R, Guha S, Basu A. Integration of silicon chip microstructures for in-line microbial cell lysis in delicate microfluidics. Lab Chip. 2023;23:2327–40.
Radisic M, Loskill P. Past PDMS and membranes: new supplies for organ-on-a-Chip units. ACS Biomater Sci Eng. 2021;7:2861–3.
van Meer BJ, de Vries H, Firth KSA, van Weerd J, Tertoolen LGJ, Karperien HBJ, Jonkheijm P, Denning C, AP IJ, Mummery CL. Small molecule absorption by PDMS within the context of drug response bioassays. Biochem Biophys Res Commun. 2017;482:323–8.
Berthier E, Younger EW, Beebe D. Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip. 2012;12:1224–37.
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The collagen suprafamily: from biosynthesis to Superior Biomaterial Growth. Adv Mater. 2019;31:e1801651.
Zhao C, Zhou L, Chiao M, Yang W. Antibacterial hydrogel coating: methods in floor chemistry. Adv Colloid Interface Sci. 2020;285:102280.
Strelez C, Jiang HY, Mumenthaler SM. Organs-on-chips: a decade of innovation. Tendencies Biotechnol. 2023;41:278–80.
Zhao Q, Cole T, Zhang Y, Tang SY. Mechanical strain-enabled reconstitution of dynamic atmosphere in Organ-on-a-Chip Platforms: a assessment. Micromachines (Basel) 2021, 12.