Organ-on-a-chip: way forward for feminine reproductive pathophysiological fashions | Journal of Nanobiotechnology

  • Bates GW, Bowling M. Physiology of the feminine reproductive axis. Periodontol 2000. 2013;61:89–102.

    Article 
    PubMed 

    Google Scholar
     

  • Weimar CH, Publish Uiterweer ED, Teklenburg G, Heijnen CJ, Macklon NS. In-vitro mannequin programs for the research of human embryo-endometrium interactions. Reprod Biomed On-line. 2013;27:461–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duval Ok, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z. Modeling physiological occasions in 2D vs. 3D cell tradition. Physiol (Bethesda). 2017;32:266–77.

    CAS 

    Google Scholar
     

  • Mazure CM, Jones DP. Twenty years and nonetheless counting: together with ladies as individuals and finding out intercourse and gender in biomedical analysis. BMC Womens Well being. 2015;15:94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grimm MJ. Engineering and girls’s well being: a sluggish begin, however gaining momentum. Interface Focus. 2019;9:20190017.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clevers H. Modeling Growth and Illness with Organoids. Cell. 2016;165:1586–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sosa-Hernandez JE, Villalba-Rodriguez AM, Romero-Castillo KD, Aguilar-Aguila-Isaias MA, Garcia-Reyes IE, Hernandez-Antonio A, Ahmed I, Sharma A, Parra-Saldivar R, Iqbal HMN. Organs-on-a-Chip Module: a assessment from the Growth and Functions Perspective. Micromachines (Basel) 2018, 9.

  • Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the following decade. Nat Rev Drug Discov. 2021;20:345–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hernsdorf AW, Amano Y, Miyakawa Ok, Ise Ok, Suzuki Y, Anantharaman Ok, Probst A, Burstein D, Thomas BC, Banfield JF. Potential for microbial H(2) and metallic transformations related to novel micro organism and archaea in deep terrestrial subsurface sediments. ISME J. 2017;11:1915–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandrycky CJ, Howard CC, Rayner SG, Shin YJ, Zheng Y. Organ-on-a-chip programs for vascular biology. J Mol Cell Cardiol. 2021;159:1–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beckwitt CH, Clark AM, Wheeler S, Taylor DL, Stolz DB, Griffith L, Wells A. Liver ‘organ on a chip’. Exp Cell Res. 2018;363:15–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Younger RE, Huh DD. Organ-on-a-chip know-how for the research of the feminine reproductive system. Adv Drug Deliv Rev. 2021;173:461–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung capabilities on a chip. Science. 2010;328:1662–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Dai Y, Dong Z, Li M, Mu X, Zhang R, Wang Z, Zhang W, Lang J, Leng J, Jiang X. Co-cultured endometrial stromal cells and peritoneal mesothelial cells for an in vitro mannequin of endometriosis. Integr Biol (Camb). 2012;4:1090–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W-X, Liang G-T, Yan W, Zhang Q, Wang W, Zhou X-M, Liu D-Y. 2013, – 41:- 472.

  • Lee JS, Romero R, Han YM, Kim HC, Kim CJ, Hong JS, Huh D. Placenta-on-a-chip: a novel platform to check the biology of the human placenta. J Matern Fetal Neonatal Med. 2016;29:1046–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao S, Coppeta JR, Rogers HB, Isenberg BC, Zhu J, Olalekan SA, McKinnon KE, Dokic D, Rashedi AS, Haisenleder DJ, et al. A microfluidic tradition mannequin of the human reproductive tract and 28-day menstrual cycle. Nat Commun. 2017;8:14584.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferraz M, Rho HS, Hemerich D, Henning HHW, van Tol HTA, Holker M, Besenfelder U, Mokry M, Vos P, Stout TAE, et al. An oviduct-on-a-chip offers an enhanced in vitro atmosphere for zygote genome reprogramming. Nat Commun. 2018;9:4934.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saha B, Mathur T, Handley KF, Hu W, Afshar-Kharghan V, Sood AK, Jain A. OvCa-Chip microsystem recreates vascular endothelium-mediated platelet extravasation in ovarian most cancers. Blood Adv. 2020;4:3329–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen C, Teng Y. Is it Time to begin transitioning from 2D to 3D cell tradition? Entrance Mol Biosci. 2020;7:33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parasrampuria DA, Benet LZ, Sharma A. Why medication fail in late levels of improvement: case research analyses from the final decade and suggestions. AAPS J. 2018;20:46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD. 3D cell tradition programs: benefits and functions. J Cell Physiol. 2015;230:16–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bialkowska Ok, Komorowski P, Bryszewska M, Milowska Ok. Spheroids as a sort of three-dimensional cell cultures-examples of strategies of Preparation and crucial utility. Int J Mol Sci 2020, 21.

  • Yoo J, Jung Y, Char Ok, Jang Y. Advances in cell coculture membranes recapitulating in vivo microenvironments. Tendencies Biotechnol. 2023;41:214–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vila-Parrondo C, Garcia-Astrain C, Liz-Marzan LM. Colloidal programs towards 3D cell tradition scaffolds. Adv Colloid Interface Sci. 2020;283:102237.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D cell Tradition programs: Tumor Software, benefits, and downsides. Int J Mol Sci 2021, 22.

  • Robinson NB, Krieger Ok, Khan FM, Huffman W, Chang M, Naik A, Yongle R, Hameed I, Krieger Ok, Girardi LN, Gaudino M. The present state of animal fashions in analysis: a assessment. Int J Surg. 2019;72:9–13.

    Article 
    PubMed 

    Google Scholar
     

  • Landi M, Everitt J, Berridge B. Bioethical, reproducibility, and Translational challenges of Animal fashions. ILAR J. 2021;62:60–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jalili-Firoozinezhad S, Miranda CC, Cabral JMS. Modeling the human physique on microfluidic chips. Tendencies Biotechnol. 2021;39:838–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma C, Peng Y, Li H, Chen W. Organ-on-a-Chip: a New Paradigm for Drug Growth. Tendencies Pharmacol Sci. 2021;42:119–33.

    Article 
    PubMed 

    Google Scholar
     

  • Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G, Maruccio G. Organs-on-chips applied sciences – a information from illness fashions to alternatives for drug improvement. Biosens Bioelectron. 2023;231:115271.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsueh AJ, Kawamura Ok, Cheng Y, Fauser BC. Intraovarian management of early folliculogenesis. Endocr Rev. 2015;36:1–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: parallels with inflammatory processes. Endocr Rev. 2019;40:369–416.

    Article 
    PubMed 

    Google Scholar
     

  • Mikhael S, Punjala-Patel A, Gavrilova-Jordan L. Hypothalamic-pituitary-ovarian Axis problems Impacting Feminine Fertility. Biomedicines 2019, 7.

  • Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M. Microfluidic organ-on-a-chip fashions of human liver tissue. Acta Biomater. 2020;116:67–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shrestha J, Razavi Bazaz S, Aboulkheyr Es H, Yaghobian Azari D, Thierry B, Ebrahimi Warkiani M, Ghadiri M. Lung-on-a-chip: the way forward for respiratory illness fashions and pharmacological research. Crit Rev Biotechnol. 2020;40:213–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashammakhi N, Wesseling-Perry Ok, Hasan A, Elkhammas E, Zhang YS. Kidney-on-a-chip: untapped alternatives. Kidney Int. 2018;94:1073–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paloschi V, Sabater-Lleal M, Middelkamp H, Vivas A, Johansson S, van der Meer A, Tenje M, Maegdefessel L. Organ-on-a-chip know-how: a novel strategy to analyze cardiovascular illnesses. Cardiovasc Res. 2021;117:2742–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puschhof J, Pleguezuelos-Manzano C, Clevers H. Organoids and organs-on-chips: insights into human gut-microbe interactions. Cell Host Microbe. 2021;29:867–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A assessment on biomaterials for ovarian tissue engineering. Acta Biomater. 2021;135:48–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goswami D, Conway GS. Untimely ovarian failure. Hum Reprod Replace. 2005;11:391–410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi JK, Agarwal P, Huang H, Zhao S, He X. The essential position of mechanical heterogeneity in regulating follicle improvement and ovulation with engineered ovarian microtissue. Biomaterials. 2014;35:5122–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aziz AUR, Fu M, Deng J, Geng C, Luo Y, Lin B, Yu X, Liu B. A microfluidic gadget for culturing an encapsulated ovarian follicle. Micromachines (Basel) 2017, 8.

  • Aziz AUR, Yu X, Jiang Q, Zhao Y, Deng S, Qin Ok, Wang H, Liu B. Doxorubicin-induced toxicity to 3D-cultured rat ovarian follicles on a microfluidic chip. Toxicol Vitro. 2020;62:104677.

    Article 

    Google Scholar
     

  • Li H, Garner T, Diaz F, Wong PK. A Multiwell Microfluidic gadget for analyzing and screening nonhormonal contraceptive brokers. Small. 2019;15:e1901910.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagashima JB, El Assal R, Songsasen N, Demirci U. Analysis of an ovary-on-a-chip in massive mammalian fashions: species specificity and affect of follicle isolation standing. J Tissue Eng Regen Med. 2018;12:e1926–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chumduri C, Turco MY. Organoids of the feminine reproductive tract. J Mol Med (Berl). 2021;99:531–53.

    Article 
    PubMed 

    Google Scholar
     

  • Ghorbani S, Eyni H, Norahan MH, Zarrintaj P, City N, Mohammadzadeh A, Mostafavi E, Sutherland DS. Superior bioengineering of feminine germ cells to protect fertility. Biol Reprod. 2022;107:1177–204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32:760–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyons RA, Saridogan E, Djahanbakhch O. The reproductive significance of human fallopian tube cilia. Hum Reprod Replace. 2006;12:363–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eddy CA, Pauerstein CJ. Anatomy and physiology of the fallopian tube. Clin Obstet Gynecol. 1980;23:1177–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferraz M, Henning HHW, Costa PF, Malda J, Melchels FP, Wubbolts R, Stout TAE, Vos P, Gadella BM. Improved bovine embryo manufacturing in an oviduct-on-a-chip system: prevention of poly-spermic fertilization and parthenogenic activation. Lab Chip. 2017;17:905–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang M, Zhu T, Liu C, Jin L, Fei P, Zhang B. Oviduct-mimicking microfluidic chips decreased the ROS focus within the in vitro fertilized embryos of CD-1 mice. Biomed Pharmacother. 2022;154:113567.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jackson-Bey T, Colina J, Isenberg BC, Coppeta J, Urbanek M, Kim JJ, Woodruff TK, Burdette JE, Russo A. Publicity of human fallopian tube epithelium to elevated testosterone ends in alteration of cilia gene expression and beating. Hum Reprod. 2020;35:2086–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo improvement. J Endocrinol. 2017;232:R1–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu J, Xu Y, Rashedi AS, Pavone ME, Kim JJ, Woodruff TK, Burdette JE. Human fallopian tube epithelium co-culture with murine ovarian follicles reveals crosstalk within the reproductive cycle. Mol Hum Reprod. 2016;22:756–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhagwat S, Sontakke S, Parte KD, Jadhav P. Chemotactic conduct of spermatozoa captured utilizing a microfluidic chip. Biomicrofluidics. 2018;12:024112.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhagwat S, Sontakke S, Desai S, Panchal D, Jadhav S, Parte P. N-formyl-l-aspartate: a novel sperm chemoattractant recognized in ovulatory part oviductal fluid utilizing a microfluidic chip. Andrology. 2021;9:1214–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu SX, Wu Y, Luo H, Liu Y, Chen YC, Wang YJ, Liu W, Tang J, Shi H, Gao H, et al. Escaping Conduct of sperms on the Biomimetic Oviductal Floor. Anal Chem. 2023;95:2366–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leemans B, Bromfield EG, Stout TAE, Vos M, Van Der Ham H, Van Beek R, Van Soom A, Gadella BM, Henning H. Creating a reproducible protocol for culturing useful confluent monolayers of differentiated equine oviduct epithelial cellsdagger. Biol Reprod. 2022;106:710–29.

    Article 
    PubMed 

    Google Scholar
     

  • Chang Ok-W, Chang P-Y, Huang H-Y, Li C-J, Tien C-H, Yao D-J, Fan S-Ok, Hsu W, Liu. C-H: 2016, – 226:- 226.

  • Ng SW, Norwitz GA, Pavlicev M, Tilburgs T, Simon C, Norwitz ER. Endometrial decidualization: the first driver of being pregnant well being. Int J Mol Sci 2020, 21.

  • Gnecco JS, Pensabene V, Li DJ, Ding T, Hui EE, Bruner-Tran KL, Osteen KG. Compartmentalized Tradition of Perivascular Stroma and endothelial cells in a microfluidic mannequin of the human endometrium. Ann Biomed Eng. 2017;45:1758–69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gnecco JS, Ding T, Smith C, Lu J, Bruner-Tran KL, Osteen KG. Hemodynamic forces improve decidualization by way of endothelial-derived prostaglandin E2 and prostacyclin in a microfluidic mannequin of the human endometrium. Hum Reprod. 2019;34:702–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn J, Yoon MJ, Hong SH, Cha H, Lee D, Koo HS, Ko JE, Lee J, Oh S, Jeon NL, Kang YJ. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum Reprod. 2021;36:2720–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oghbaei F, Zarezadeh R, Jafari-Gharabaghlou D, Ranjbar M, Nouri M, Fattahi A, Imakawa Ok. Epithelial-mesenchymal transition course of throughout embryo implantation. Cell Tissue Res. 2022;388:1–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niringiyumukiza JD, Cai H, Xiang W. Prostaglandin E2 involvement in mammalian feminine fertility: ovulation, fertilization, embryo improvement and early implantation. Reprod Biol Endocrinol. 2018;16:43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park SR, Kim SR, Lee JW, Park CH, Yu WJ, Lee SJ, Chon SJ, Lee DH, Hong IS. Growth of a novel twin reproductive organ on a chip: recapitulating bidirectional endocrine crosstalk between the uterine endometrium and the ovary. Biofabrication 2020, 13.

  • Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, Bhushan BM, Freake D, Kirschner J, Maass C, Tsamandouras N, et al. Interconnected Microphysiological programs for quantitative Biology and Pharmacology research. Sci Rep. 2018;8:4530.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esch MB, Smith AS, Prot JM, Oleaga C, Hickman JJ, Shuler ML. How multi-organ microdevices may also help foster drug improvement. Adv Drug Deliv Rev. 2014;69–70:158–69.

    Article 
    PubMed 

    Google Scholar
     

  • Martyn F, McAuliffe FM, Wingfield M. The position of the cervix in fertility: is it time for a reappraisal? Hum Reprod. 2014;29:2092–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lacroix G, Gouyer V, Gottrand F, Desseyn JL. The Cervicovaginal mucus barrier. Int J Mol Sci 2020, 21.

  • Tantengco OAG, Richardson LS, Medina PMB, Han A, Menon R. Organ-on-chip of the cervical epithelial layer: a platform to check regular and pathological mobile transforming of the cervix. FASEB J. 2021;35:e21463.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tantengco OAG, Richardson LS, Radnaa E, Kammala AK, Kim S, Medina PMB, Han A, Menon R. Modeling ascending Ureaplasma parvum an infection by way of the feminine reproductive tract utilizing vagina-cervix-decidua-organ-on-a-chip and feto-maternal interface-organ-on-a-chip. FASEB J 2022, 36:e22551.

  • Tantengco OAG, Richardson LS, Radnaa E, Kammala AK, Kim S, Medina PMB, Han A, Menon R. Exosomes from Ureaplasma parvum-infected ectocervical epithelial cells promote feto-maternal interface irritation however are inadequate to trigger preterm supply. Entrance Cell Dev Biol. 2022;10:931609.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buggio L, Somigliana E, Borghi A, Vercellini P. Probiotics and vaginal microecology: reality or fancy? BMC Womens Well being. 2019;19:25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahajan G, Doherty E, To T, Sutherland A, Grant J, Junaid A, Gulati A, LoGrande N, Izadifar Z, Timilsina SS, et al. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome. 2022;10:201.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izadifar Z, Sontheimer-Phelps A, Lubamba BA, Bai H, Fadel C, Stejskalova A, Ozkan A, Dasgupta Q, Bein A, Junaid A, et al. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv Drug Deliv Rev. 2022;191:114542.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu SX, Liu Y, Wu Y, Luo H, Huang R, Wang YJ, Wang X, Gao H, Shi H, Jing G, Liu YJ. Cervix chip mimicking cervical microenvironment for quantifying sperm locomotion. Biosens Bioelectron. 2022;204:114040.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knofler M, Pollheimer J. IFPA Award in Placentology lecture: molecular regulation of human trophoblast invasion. Placenta. 2012;33(Suppl):S55–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maltepe E, Fisher SJ. Placenta: the forgotten organ. Annu Rev Cell Dev Biol. 2015;31:523–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moffett A, Loke C. Immunology of placentation in eutherian mammals. Nat Rev Immunol. 2006;6:584–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang X, Luthi M, Ontsouka EC, Kallol S, Baumann MU, Surbek DV, Albrecht C. Institution of a confluent monolayer mannequin with human major trophoblast cells: novel insights into placental glucose transport. Mol Hum Reprod. 2016;22:442–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elad D, Levkovitz R, Jaffa AJ, Desoye G, Hod M. Have we uncared for the position of fetal endothelium in transplacental transport? Visitors. 2014;15:122–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma T, Yang ST, Kniss DA. Growth of an in vitro human placenta mannequin by the cultivation of human trophoblasts in a fiber-based bioreactor system. Tissue Eng. 1999;5:91–102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mosavati B, Oleinikov AV, Du E. Growth of an organ-on-a-chip-device for research of placental pathologies. Int J Mol Sci 2020, 21.

  • Blundell C, Tess ER, Schanzer AS, Coutifaris C, Su EJ, Parry S, Huh D. A microphysiological mannequin of the human placental barrier. Lab Chip. 2016;16:3065–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blundell C, Yi YS, Ma L, Tess ER, Farrell MJ, Georgescu A, Aleksunes LM, Huh D. Placental drug transport-on-a-Chip: a Microengineered in Vitro Mannequin of transporter-mediated drug efflux within the human placental barrier. Adv Healthc Mater 2018, 7.

  • Pemathilaka RL, Caplin JD, Aykar SS, Montazami R, Hashemi NN. Placenta-on-a-Chip: in Vitro Research of Caffeine Transport throughout placental barrier utilizing Liquid Chromatography Mass Spectrometry. Glob Chall. 2019;3:1800112.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richardson LS, Costantine AKK, Fortunato MM, Radnaa SJ, Kim E, Taylor S, Han RN, Menon A. Testing of medication utilizing human feto-maternal interface organ-on-chips present insights into pharmacokinetics and efficacy. Lab Chip. 2022;22:4574–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • West RC, Ming H, Logsdon DM, Solar J, Rajput SK, Kile RA, Schoolcraft WB, Roberts RM, Krisher RL, Jiang Z, Yuan Y. Dynamics of trophoblast differentiation in peri-implantation-stage human embryos. Proc Natl Acad Sci U S A. 2019;116:22635–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mess AM, Ferner KJ. Evolution and improvement of gasoline alternate buildings in Mammalia: the placenta and the lung. Respir Physiol Neurobiol. 2010;173(Suppl):S74–82.

    Article 
    PubMed 

    Google Scholar
     

  • Dabaghi M, Fusch G, Saraei N, Rochow N, Brash JL, Fusch C, Ravi Selvaganapathy P. A man-made placenta kind microfluidic blood oxygenator with double-sided gasoline switch microchannels and its integration as a neonatal lung help gadget. Biomicrofluidics. 2018;12:044101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rabussier G, Bunter I, Bouwhuis J, Soragni C, van Zijp T, Ng CP, Domansky Ok, de Windt LJ, Vulto P, Murdoch CE, et al. Wholesome and diseased placental barrier on-a-chip fashions appropriate for standardized research. Acta Biomater. 2023;164:363–76.

    Article 
    PubMed 

    Google Scholar
     

  • Pemathilaka RL, Reynolds DE, Hashemi NN. Drug transport throughout the human placenta: assessment of placenta-on-a-chip and former approaches. Interface Focus. 2019;9:20190031.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin F, Zhu Y, Zhang M, Yu H, Chen W, Qin J. A 3D human placenta-on-a-chip mannequin to probe nanoparticle publicity on the placental barrier. Toxicol Vitro. 2019;54:105–13.

    Article 
    CAS 

    Google Scholar
     

  • Schuller P, Rothbauer M, Kratz SRA, Höll G, Taus P, Schinnerl M, Genser J, Bastus N, Moriones OH, Puntes V. : 2020, – 312.

  • Abostait A, Tyrrell J, Abdelkarim M, Shojaei S, Tse WH, El-Sherbiny IM, Keijzer R, Labouta HI. Placental nanoparticle Uptake-On-a-Chip: the affect of trophoblast syncytialization and shear stress. Mol Pharm. 2022;19:3757–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shojaei S, Ali MS, Suresh M, Upreti T, Mogourian V, Helewa M, Labouta HI. Dynamic placenta-on-a-chip mannequin for fetal threat evaluation of nanoparticles meant to deal with pregnancy-associated illnesses. Biochim Biophys Acta Mol Foundation Dis. 2021;1867:166131.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arumugasaamy N, Rock KD, Kuo CY, Bale TL, Fisher JP. Microphysiological programs of the placental barrier. Adv Drug Deliv Rev. 2020;161–162:161–75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sood A, Kumar A, Gupta VK, Kim CM, Han SS. Translational nanomedicines Throughout Human Reproductive organs modeling on microfluidic chips: state-of-the-art and future prospects. ACS Biomater Sci Eng. 2023;9:62–84.

    Article 
    PubMed 

    Google Scholar
     

  • Ashary N, Tiwari A, Modi D. Embryo implantation: Battle in Occasions of Love. Endocrinology. 2018;159:1188–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbas Y, Turco MY, Burton GJ, Moffett A. Investigation of human trophoblast invasion in vitro. Hum Reprod Replace. 2020;26:501–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miura S, Sato Ok, Kato-Negishi M, Teshima T, Takeuchi S. Fluid shear triggers microvilli formation by way of mechanosensitive activation of TRPV6. Nat Commun. 2015;6:8871.

    Article 
    PubMed 

    Google Scholar
     

  • Abbas Y, Oefner CM, Polacheck WJ, Gardner L, Farrell L, Sharkey A, Kamm R, Moffett A, Oyen ML. A microfluidics assay to check invasion of human placental trophoblast cells. J R Soc Interface 2017, 14.

  • Pu Y, Gingrich J, Veiga-Lopez A. A three-d microfluidic platform for modeling human extravillous trophoblast invasion and toxicological screening. Lab Chip. 2021;21:546–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng P, Cui Ok, Shi Y, Zhu Y, Wang Y, Shao X, Qin J. Fluidic Move enhances the differentiation of placental trophoblast-like 3D tissue from hiPSCs in a perfused macrofluidic gadget. Entrance Bioeng Biotechnol. 2022;10:907104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao R, Wang Y, Liu J, Rong L, Qin J. Self-assembled human placental mannequin from trophoblast stem cells in a dynamic organ-on-a-chip system. Cell Prolif. 2023;56:e13469.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murtha AP, Menon R. Regulation of fetal membrane irritation: a important step in decreasing adversarial being pregnant consequence. Am J Obstet Gynecol. 2015;213:447–8.

    Article 
    PubMed 

    Google Scholar
     

  • Phillips C, Velji Z, Hanly C, Metcalfe A. Danger of recurrent spontaneous preterm beginning: a scientific assessment and meta-analysis. BMJ Open. 2017;7:e015402.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung E, Romero R, Yeo L, Diaz-Primera R, Marin-Concha J, Para R, Lopez AM, Pacora P, Gomez-Lopez N, Yoon BH, et al. The fetal inflammatory response syndrome: the origins of an idea, pathophysiology, prognosis, and obstetrical implications. Semin Fetal Neonatal Med. 2020;25:101146.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomlinson MS, Lu Ok, Stewart JR, Marsit CJ, O’Shea TM, Fry RC. Microorganisms within the Placenta: hyperlinks to early-life irritation and neurodevelopment in youngsters. Clin Microbiol Rev 2019, 32.

  • Gnecco JS, Anders AP, Cliffel D, Pensabene V, Rogers LM, Osteen Ok, Aronoff DM. Instrumenting a fetal membrane on a chip as Rising Know-how for Preterm Start Analysis. Curr Pharm Des. 2017;23:6115–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Y, Yin F, Wang H, Wang L, Yuan J, Qin J. Placental barrier-on-a-Chip: modeling placental inflammatory responses to bacterial an infection. ACS Biomater Sci Eng. 2018;4:3356–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mosavati B, Oleinikov A, Du E. 3D microfluidics-assisted modeling of glucose transport in placental malaria. Sci Rep. 2022;12:15278.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richardson L, Jeong S, Kim S, Han A, Menon R. Amnion membrane organ-on-chip: an progressive strategy to check mobile interactions. FASEB J. 2019;33:8945–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richardson L, Gnecco J, Ding T, Osteen Ok, Rogers LM, Aronoff DM, Menon R. Fetal membrane Organ-On-Chip: an progressive Strategy to Research Mobile interactions. Reprod Sci. 2020;27:1562–9.

    Article 
    PubMed 

    Google Scholar
     

  • Richardson LS, Kim S, Han A, Menon R. Modeling ascending an infection with a feto-maternal interface organ-on-chip. Lab Chip. 2020;20:4486–501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S, Richardson L, Radnaa E, Chen Z, Rusyn I, Menon R, Han A. Molecular mechanisms of environmental toxin cadmium on the feto-maternal interface investigated utilizing an organ-on-chip (FMi-OOC) mannequin. J Hazard Mater. 2022;422:126759.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richardson LS, Kammala AK, Kim S, Lam PY, Truong N, Radnaa E, Urrabaz-Garza R, Han A, Menon R. Growth of oxidative stress-associated illness fashions utilizing feto-maternal interface organ-on-a-chip. FASEB J. 2023;37:e23000.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richardson LS, Emezienna N, Burd I, Taylor BD, Peltier MR, Han A, Menon R. Adapting an organ-on-chip gadget to check the impact of fetal intercourse and maternal race/ethnicity on preterm beginning associated intraamniotic irritation resulting in fetal neuroinflammation. Am J Reprod Immunol. 2022;88:e13638.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin F, Zhu Y, Wang H, Wang Y, Li D, Qin J. Microengineered hiPSC-Derived 3D amnion tissue mannequin to probe amniotic inflammatory responses beneath bacterial publicity. ACS Biomater Sci Eng. 2020;6:4644–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cannistra SA. Most cancers of the ovary. N Engl J Med. 2004;351:2519–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishiguro T, Sato A, Ohata H, Ikarashi Y, Takahashi RU, Ochiya T, Yoshida M, Tsuda H, Onda T, Kato T, et al. Institution and characterization of an in vitro mannequin of Ovarian Most cancers stem-like cells with an enhanced proliferative capability. Most cancers Res. 2016;76:150–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parrish J, Lim KS, Baer Ok, Hooper GJ, Woodfield TBF. A 96-well microplate bioreactor platform supporting particular person twin perfusion and high-throughput evaluation of straightforward or biofabricated 3D tissue fashions. Lab Chip. 2018;18:2757–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorayappan KDP, Gardner ML, Hisey CL, Zingarelli RA, Smith BQ, Lightfoot MDS, Gogna R, Flannery MM, Hays J, Hansford DJ, et al. A microfluidic chip permits isolation of Exosomes and Institution of their protein profiles and Related Signaling pathways in Ovarian Most cancers. Most cancers Res. 2019;79:3503–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang P, Zhou X, He M, Shang Y, Tetlow AL, Godwin AK, Zeng Y. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng. 2019;3:438–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saha B, Mathur T, Tronolone JJ, Chokshi M, Lokhande GK, Selahi A, Gaharwar AK, Afshar-Kharghan V, Sood AK, Bao G, Jain A. Human tumor microenvironment chip evaluates the results of platelet extravasation and combinatorial antitumor-antiplatelet remedy in ovarian most cancers. Sci Adv 2021, 7.

  • Fedi A, Vitale C, Fato M, Scaglione S. A human ovarian tumor & liver organ-on-chip for simultaneous and extra predictive toxo-efficacy assays. Bioeng (Basel) 2023, 10.

  • Lin SF, Gerry E, Shih IM. Tubal origin of ovarian most cancers – the double-edged sword of haemoglobin. J Pathol. 2017;242:3–6.

    Article 
    PubMed 

    Google Scholar
     

  • de Ferraz AMM, Nagashima M, Venzac JB, Le Gac B, Songsasen S. A canine oviduct-on-a-chip mannequin of serous tubal intraepithelial carcinoma. Sci Rep. 2020;10:1575.

    Article 

    Google Scholar
     

  • Kim GJ, Lee KJ, Choi JW, An JH. Drug analysis primarily based on a multi-channel cell chip with a horizontal co-culture. Int J Mol Sci 2021, 22.

  • Chapron C, Marcellin L, Borghese B, Santulli P. Rethinking mechanisms, prognosis and administration of endometriosis. Nat Rev Endocrinol. 2019;15:666–82.

    Article 
    PubMed 

    Google Scholar
     

  • Tirado-Gonzalez I, Barrientos G, Tariverdian N, Arck PC, Garcia MG, Klapp BF, Blois SM. Endometriosis analysis: animal fashions for the research of a fancy illness. J Reprod Immunol. 2010;86:141–7.

    Article 
    PubMed 

    Google Scholar
     

  • Malvezzi H, Marengo EB, Podgaec S, Piccinato CA. Endometriosis: present challenges in modeling a multifactorial illness of unknown etiology. J Transl Med. 2020;18:311.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen CH, Miller MA, Sarkar A, Beste MT, Isaacson KB, Lauffenburger DA, Griffith LG, Han J. Multiplexed protease exercise assay for low-volume scientific samples utilizing droplet-based microfluidics and its utility to endometriosis. J Am Chem Soc. 2013;135:1645–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kapur A, Ayuso JM, Rehman S, Kumari S, Felder M, Stenerson Z, Skala MC, Beebe D, Barroilhet L, Patankar MS. Oxidative phosphorylation inhibitors inhibit proliferation of endometriosis cells. Copy. 2023;165:617–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, Hollinshead M, Marsh SGE, Brosens JJ, Critchley HO, et al. Lengthy-term, hormone-responsive organoid cultures of human endometrium in a chemically outlined medium. Nat Cell Biol. 2017;19:568–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: pathophysiology, challenges, and views. Circ Res. 2019;124:1094–112.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roland CS, Hu J, Ren CE, Chen H, Li J, Varvoutis MS, Leaphart LW, Byck DB, Zhu X, Jiang SW. Morphological adjustments of placental syncytium and their implications for the pathogenesis of preeclampsia. Cell Mol Life Sci. 2016;73:365–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luscher BP, Marini C, Joerger-Messerli MS, Huang X, Hediger MA, Albrecht C, Baumann MU, Surbek DV. Placental glucose transporter (GLUT)-1 is down-regulated in preeclampsia. Placenta. 2017;55:94–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang A, Rana S, Karumanchi SA. Preeclampsia: the position of angiogenic elements in its pathogenesis. Physiol (Bethesda). 2009;24:147–58.


    Google Scholar
     

  • Pattanayak P, Singh SK, Gulati M, Vishwas S, Kapoor B, Chellappan DK, Anand Ok, Gupta G, Jha NK, Gupta PK, et al. Microfluidic chips: current advances, important methods in design, functions and future views. Microfluid Nanofluidics. 2021;25:99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rowinska M, Kelleher SM, Soberon F, Ricco AJ, Daniels S. Fabrication and characterisation of spin coated oxidised PMMA to supply a sturdy floor for on-chip assays. J Mater Chem B. 2015;3:135–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nittala PVK, Hohreiter A, Rosas Linhard E, Dohn R, Mishra S, Konda A, Divan R, Guha S, Basu A. Integration of silicon chip microstructures for in-line microbial cell lysis in delicate microfluidics. Lab Chip. 2023;23:2327–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radisic M, Loskill P. Past PDMS and membranes: new supplies for organ-on-a-Chip units. ACS Biomater Sci Eng. 2021;7:2861–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Meer BJ, de Vries H, Firth KSA, van Weerd J, Tertoolen LGJ, Karperien HBJ, Jonkheijm P, Denning C, AP IJ, Mummery CL. Small molecule absorption by PDMS within the context of drug response bioassays. Biochem Biophys Res Commun. 2017;482:323–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berthier E, Younger EW, Beebe D. Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip. 2012;12:1224–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The collagen suprafamily: from biosynthesis to Superior Biomaterial Growth. Adv Mater. 2019;31:e1801651.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao C, Zhou L, Chiao M, Yang W. Antibacterial hydrogel coating: methods in floor chemistry. Adv Colloid Interface Sci. 2020;285:102280.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strelez C, Jiang HY, Mumenthaler SM. Organs-on-chips: a decade of innovation. Tendencies Biotechnol. 2023;41:278–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Q, Cole T, Zhang Y, Tang SY. Mechanical strain-enabled reconstitution of dynamic atmosphere in Organ-on-a-Chip Platforms: a assessment. Micromachines (Basel) 2021, 12.

  • Leave a Reply

    Your email address will not be published. Required fields are marked *