A nanozyme-functionalized bilayer hydrogel scaffold for modulating the inflammatory microenvironment to advertise osteochondral regeneration | Journal of Nanobiotechnology

  • Steinmetz JD, Culbreth GT, Haile LM, Rafferty Q, Lo J, Fukutaki KG, Cruz JA, Smith AE, Vollset SE, Brooks PM, et al. World, regional, and nationwide burden of osteoarthritis, 1990–2020 and projections to 2050: a scientific evaluation for the World Burden of Illness Examine 2021. Lancet Rheumatol. 2023;5:e508–22.

    Article 

    Google Scholar
     

  • Lesage C, Lafont M, Guihard P, Weiss P, Guicheux J, Delplace V. Materials-assisted methods for osteochondral defect restore. Adv Sci. 2022;9:2200050.

    Article 
    CAS 

    Google Scholar
     

  • Deng C, Zhou Q, Zhang M, Li T, Chen H, Xu C, Feng Q, Wang X, Yin F, Cheng Y, Wu C. Bioceramic scaffolds with antioxidative capabilities for ROS scavenging and osteochondral regeneration. Superior sciences. 2022;9:2105727.

    CAS 

    Google Scholar
     

  • Shu C, Qin C, Chen L, Wang Y, Shi Z, Yu J, Huang J, Zhao C, Huan Z, Wu C, et al. Metallic-organic framework functionalized bioceramic scaffolds with antioxidative exercise for enhanced osteochondral regeneration. Adv Sci. 2023;10:2206875.

    Article 
    CAS 

    Google Scholar
     

  • Cao Z, Wang H, Chen J, Zhang Y, Mo Q, Zhang P, Wang M, Liu H, Bao X, Solar Y, et al. Silk-based hydrogel integrated with metal-organic framework nanozymes for enhanced osteochondral regeneration. Bioactiv Mater. 2023;20:221–42.

    Article 
    CAS 

    Google Scholar
     

  • Yang M, Zhang Z-C, Yuan F-Z, Deng R-H, Yan X, Mao F-B, Chen Y-R, Lu H, Yu J-Okay. An immunomodulatory polypeptide hydrogel for osteochondral defect restore. Bioactiv Mater. 2023;19:678–89.

    Article 
    CAS 

    Google Scholar
     

  • Yang F, Li Y, Wang L, Che H, Zhang X, Jahr H, Wang L, Jiang D, Huang H, Wang J. Full-thickness osteochondral defect restore utilizing a biodegradable bilayered scaffold of porous zinc and chondroitin sulfate hydrogel. Bioactiv Mater. 2024;32:400–14.

    Article 
    CAS 

    Google Scholar
     

  • Qiao Z, Lian M, Han Y, Solar B, Zhang X, Jiang W, Li H, Hao Y, Dai Okay. Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capability for useful osteochondral regeneration. Biomaterials. 2021;266:120385.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai W, Cheng J, Yan W, Cao C, Zhao F, Li Q, Hu X, Wang J, Ao Y. Enhanced osteochondral restore with hyaline cartilage formation utilizing an extracellular matrix-inspired pure scaffold. Sci Bull. 2023;68:1904–17.

    Article 
    CAS 

    Google Scholar
     

  • Li Q, Yu H, Zhao F, Cao C, Wu T, Fan Y, Ao Y, Hu X. 3D Printing of microenvironment-specific bioinspired and exosome-reinforced hydrogel scaffolds for environment friendly cartilage and subchondral bone regeneration. Adv Sci. 2023;10:2303650.

    Article 
    CAS 

    Google Scholar
     

  • Yu L, Cavelier S, Hannon B, Wei M. Current growth in multizonal scaffolds for osteochondral regeneration. Bioactive Mater. 2023;25:122–59.

    Article 
    CAS 

    Google Scholar
     

  • Steele JAM, Moore AC, St-Pierre J-P, McCullen SD, Gormley AJ, Horgan CC, Black CRM, Meinert C, Klein T, Saifzadeh S, et al. In vitro and in vivo investigation of a zonal microstructured scaffold for osteochondral defect restore. Biomaterials. 2022;286:121548.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Peng L, Li L, Huang C, Shi Okay, Meng X, Wang P, Wu M, Li L, Cao H, et al. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for environment friendly restore of osteochondral defects in an osteoarthritic rat mannequin. Biomaterials. 2021;279:121216.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nie D, Ling Y, Lv W, Liu Q, Deng S, Shi J, Yang J, Yang Y, Ouyang S, Huang Y,., et al. In situ connected photothermal immunomodulation-enhanced nanozyme for the inhibition of postoperative malignant glioma recurrence. ACS Nano. 2023. https://doi.org/10.1021/acsnano.3c03696.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen R, Yang J, Wu M, Zhao D, Yuan Z, Zeng L, Hu J, Zhang X, Wang T, Xu J, Zhang J. M2 macrophage hybrid membrane-camouflaged focused biomimetic nanosomes to reprogram inflammatory microenvironment for enhanced enzyme-thermo-immunotherapy. Adv Mater. 2023. https://doi.org/10.1002/adma.202304123.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai J, Liu L-F, Qin Z, Liu S, Wang Y, Chen Z, Yao Y, Zheng L, Zhao J, Gao M. Pure morin-based steel natural framework nanoenzymes modulate articular cavity microenvironment to alleviate osteoarthritis. Analysis. 2023;6:0068.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, Zhang W, Pan Q, Tao J, Li S, Jiang T, Zhao X. Hyaluronic acid-based cus nanoenzyme biodegradable microneedles for treating deep cutaneous fungal an infection with out drug resistance. Nano Lett. 2023;23:1327–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang M, Wang Z, Dong C, Zhou R, Chen L, Huang H, Feng W, Wang Z, Wang Y, Chen Y. Ultrasound-amplified enzyodynamic tumor remedy by perovskite nanoenzyme-enabled cell pyroptosis and cascade catalysis. Adv Mater. 2023;35:2208817.

    Article 
    CAS 

    Google Scholar
     

  • Hu R, Dai C, Dong C, Ding L, Huang H, Chen Y, Zhang B. Residing macrophage-delivered tetrapod PdH nanoenzyme for focused atherosclerosis administration by ROS scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano. 2022;16:15959–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng F, Wang S, Zheng H, Shen H, Zhou L, Yang Z, Li Q, Zhang Q, Zhang H. Ceria nanoenzyme-based hydrogel with antiglycative and antioxidative efficiency for contaminated diabetic wound therapeutic. Small Strategies. 2022;6:2200949.

    Article 
    CAS 

    Google Scholar
     

  • Zhang L, Qin Z, Solar H, Chen X, Dong J, Shen S, Zheng L, Gu N, Jiang Q. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint harm in superior rheumatoid arthritis through regulating inflammatory atmosphere. Bioactive Mater. 2022;18:1–14.

    Article 

    Google Scholar
     

  • Zhou J, Xu D, Tian G, He Q, Zhang X, Liao J, Mei L, Chen L, Gao L, Zhao L, et al. Coordination-driven self-assembly strategy-activated Cu single-atom nanozymes for catalytic tumor-specific remedy. J Am Chem Soc. 2023;145:4279–93.

    Article 
    CAS 

    Google Scholar
     

  • Jiang Y, Rong H, Wang Y, Liu S, Xu P, Luo Z, Guo L, Zhu T, Rong H, Wang D, et al. Single-atom cobalt nanozymes promote spinal twine harm restoration by anti-oxidation and neuroprotection. Nano Res. 2023;16:9752–9.

    Article 
    CAS 

    Google Scholar
     

  • Zhou Y, Liu C, Yu Y, Yin M, Solar J, Huang J, Chen N, Wang H, Fan C, Music H. An organelle-specific nanozyme for diabetes care in genetically or diet-induced fashions. Adv Mater. 2020;32:2003708.

    Article 
    CAS 

    Google Scholar
     

  • Zhou T, Ran J, Xu P, Shen L, He Y, Ye J, Wu L, Gao C. A hyaluronic acid/platelet-rich plasma hydrogel containing MnO2 nanozymes effectively alleviates osteoarthritis in vivo. Carbohyd Polym. 2022;292:119667.

    Article 
    CAS 

    Google Scholar
     

  • Zhu Y, Zhao R, Feng L, Wang C, Dong S, Zyuzin MV, Timin A, Hu N, Liu B, Yang P. Twin nanozyme-driven ptsn bimetallic nanoclusters for metal-enhanced tumor photothermal and catalytic remedy. ACS Nano. 2023;17:6833–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Music G, Shao X, Qu C, Shi D, Jia R, Chen Y, Wang J, An H. A big-pore mesoporous Au@Pt@Rh trimetallic nanostructure with hyperthermia-enhanced enzyme-mimic actions for immunomodulation-improved tumor catalytic remedy. Chem Eng J. 2023;477:147161.

    Article 
    CAS 

    Google Scholar
     

  • Li H, Pei P, He Q, Dong X, Zhang C, Shen W, Chen H, Hu L, Tao Y, Yang Okay. Nanozyme-coated micro organism hitchhike on CD11b+ immune cells to spice up tumor radio-immunotherapy. Adv Mater. 2024. https://doi.org/10.1002/adma.202309332.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Dai X, Wu L, Xiang H, Chen Y, Zhang R. Atomic vacancies-engineered ultrathin trimetallic nanozyme with anti-inflammation and antitumor performances for intestinal illness therapy. Biomaterials. 2023;299:122178.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Cheng C, Zhao S, Liu Q, Zhang Y, Liu W, Zhao X, Zhang H, Pu J, Zhang S, et al. A valence-engineered self-cascading antioxidant nanozyme for the remedy of inflammatory bowel illness. Angew Chem. 2022;61:e202201101.

    Article 
    CAS 

    Google Scholar
     

  • Thibault RA, Scott Baggett L, Mikos AG, Kasper FK. Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds within the absence of osteogenic cell tradition dietary supplements. Tissue Eng Half A. 2010;16:431–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape supplies a biologist-oriented useful resource for the evaluation of systems-level datasets. Nat Commun. 2019;10:1523.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 2010;5:51–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Shen P, Yao T, Ma J, Chen Z, Zhu J, Gong Z, Shen S, Fang X. Novel function of circRSU1 within the development of osteoarthritis by adjusting oxidative stress. Theranostics. 2021;11:1877–900.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar S, Adjei IM, Brown SB, Liseth O, Sharma B. Manganese dioxide nanoparticles shield cartilage from inflammation-induced oxidative stress. Biomaterials. 2019;224:119467.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Han F, Ma J, Wang H, Pan J, Yang G, Zhao H, Zhao J, Liu J, Liu Z, Li B. Concentrating on endogenous hydrogen peroxide at bone defects promotes bone restore. Adv Func Mater. 2022;32:2111208.

    Article 
    CAS 

    Google Scholar
     

  • Migliaccio V, Blal N, De Girolamo M, Mastronardi V, Catalano F, Di Gregorio I, Lionetti L, Pompa PP, Guarnieri D. Inter-organelle contact websites mediate the intracellular antioxidant exercise of platinum nanozymes: a brand new perspective on cell-nanoparticle interplay and signaling. ACS Appl Mater Interfaces. 2023;15:3882–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh N, NaveenKumar SK, Geethika M, Mugesh G. A cerium vanadate nanozyme with particular superoxide dismutase exercise regulates mitochondrial perform and ATP synthesis in neuronal cells. Angew Chem Int Ed. 2021;60:3121–30.

    Article 
    CAS 

    Google Scholar
     

  • Zhang F, Kang Y, Feng L, Xi G, Chen W, Kong N, Tao W, Luan T, Koo S, Ji X. Contaminated wound restore with an ultrasound-enhanced nanozyme hydrogel scaffold. Mater Horizons. 2023. https://doi.org/10.1039/D3MH01054F.

    Article 

    Google Scholar
     

  • Chen B, He Q, Chen C, Lin Y, Xiao J, Pan Z, Li M, Li S, Yang J, Wang F, et al. Mixture of curcumin and catalase protects towards chondrocyte harm and knee osteoarthritis development by suppressing oxidative stress. Biomed Pharmacother. 2023;168:115751.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Shen L, Ni W, Ding Y, Yang W, Gu T, Zhang C, Yik JHN, Haudenschild DR, Fan S, et al. CircGNB1 drives osteoarthritis pathogenesis by inducing oxidative stress in chondrocytes. Clin Transl Med. 2023;13:e1358.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor EL, Collins JA, Gopalakrishnan P, Chubinskaya S, Loeser RF. Age and oxidative stress regulate Nrf2 homeostasis in human articular chondrocytes. Osteoarthritis Cartilage. 2023;31:1214–23.

    Article 
    PubMed 

    Google Scholar
     

  • Park DR, Kim J, Kim GM, Lee H, Kim M, Hwang D, Lee H, Kim H-S, Kim W, Park MC, et al. Osteoclast-associated receptor blockade prevents articular cartilage destruction through chondrocyte apoptosis regulation. Nat Commun. 2020;11:4343.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren C, Hao X, Wang L, Hu Y, Meng L, Zheng S, Ren F, Bu W, Wang H, Li D, et al. Metformin carbon dots for selling periodontal bone regeneration through activation of ERK/AMPK pathway. Adv Healthc Mater. 2021;10:2100196.

    Article 
    CAS 

    Google Scholar
     

  • Hu X, Wang Z, Wang W, Cui P, Kong C, Chen X, Lu S. Irisin as an agent for shielding towards osteoporosis: a evaluation of the present mechanisms and pathways. J Adv Res. 2023. https://doi.org/10.1016/j.jare.2023.09.001.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao H, Li L, Dong L, Chen H, Shan X, Zhuge L, Lou H. Development differentiation issue 7 pretreatment enhances the therapeutic capability of bone marrow-derived mesenchymal stromal cells towards cerebral ischemia-reperfusion harm. Chem Biol Work together. 2023;386:110779.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sekar P, Hsiao G, Hsu S-H, Huang D-Y, Lin W-W, Chan C-M. Metformin inhibits methylglyoxal-induced retinal pigment epithelial cell demise and retinopathy through AMPK-dependent mechanisms: reversing mitochondrial dysfunction and upregulating glyoxalase 1. Redox Biol. 2023;64:102786.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Okay, Wang T, Solar G-F, Xiao J-X, Jiang L-P, Tou F-F, Qu X-H, Han X-J. Metformin protects towards retinal ischemia/reperfusion harm by means of AMPK-mediated mitochondrial fusion. Free Radical Biol Med. 2023;205:47–61.

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *