Dargaville, B. L. & Hutmacher, D. W. Water as the usually uncared for medium on the interface between supplies and biology. Nat. Commun. 13, 4222 (2022).
DeSimone, J. M. Sensible approaches to inexperienced solvents. Science 297, 799–803 (2002).
Nel, A. E. et al. Understanding biophysicochemical interactions on the nano–bio interface. Nat. Mater. 8, 543–557 (2009).
Li, W. et al. Biodegradable supplies and inexperienced processing for inexperienced electronics. Adv. Mater. 32, 2001591 (2020).
Choi, H.-J. & Montemagno, C. D. in Handbook of Science and Know-how Convergence (eds Bainbridge, W. S. & Roco, M. C.) 253–277 (Springer, 2016).
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. Wetting and spreading. Rev. Mod. Phys. 81, 739–805 (2009).
Mohammadi, R., Wassink, J. & Amirfazli, A. Impact of surfactants on wetting of super-hydrophobic surfaces. Langmuir 20, 9657–9662 (2004).
Lee, Ok. S., Ivanova, N., Starov, V. M., Hilal, N. & Dutschk, V. Kinetics of wetting and spreading by aqueous surfactant options. Adv. Colloid Interface Sci. 144, 54–65 (2008).
Liu, T. “Leo” & Kim, C.-J. “C. J. ” Turning a floor superrepellent even to utterly wetting liquids. Science 346, 1096–1100 (2014).
Arif, S., Umar, M., Kim, S. & Kim, S. Tuning photoluminescence of organic gentle emitters by way of silk protein based mostly resonators. Curr. Choose. Photon. 3, 40–45 (2019).
Vinchon, P., Glad, X., Robert Bigras, G., Martel, R. & Stafford, L. Preferential self-healing at grain boundaries in plasma-treated graphene. Nat. Mater. 20, 49–54 (2021).
Pu, H., Zhou, Q., Yue, L. & Zhang, Q. Investigation of oxygen plasma therapy on the machine efficiency of solution-processed a-IGZO skinny movie transistors. Appl. Surf. Sci. 283, 722–726 (2013).
Lo, M.-F., Ng, T.-W., Mo, H.-W. & Lee, C.-S. Direct menace of a UV-ozone handled indium–tin-oxide substrate to the stabilities of widespread natural semiconductors. Adv. Funct. Mater. 23, 1718–1723 (2013).
Geng, H.-Z. et al. Absorption spectroscopy of surfactant-dispersed carbon nanotube movie: modulation of digital constructions. Chem. Phys. Lett. 455, 275–278 (2008).
Badmus, S. O., Amusa, H. Ok., Oyehan, T. A. & Saleh, T. A. Environmental dangers and toxicity of surfactants: overview of research, evaluation, and remediation strategies. Environ. Sci. Pollut. Res 28, 62085–62104 (2021).
Marcial-Hernandez, R. et al. Aqueous processing of natural semiconductors enabled by secure nanoparticles with built-in surfactants. Nanoscale 15, 6793–6801 (2023).
Omenetto, F. G. & Kaplan, D. L. A brand new route for silk. Nat. Photon 2, 641–643 (2008).
Omenetto, F. G. & Kaplan, D. L. New alternatives for an historic materials. Science 329, 528–531 (2010).
Guidetti, G. et al. Silk supplies on the convergence of science, sustainability, healthcare, and know-how. Appl. Phys. Rev. 9, 011302 (2022).
Kim, B. J., Bonacchini, G. E., Ostrovsky-Snider, N. A. & Omenetto, F. G. Bimodal gating mechanism in hybrid thin-film transistors based mostly on dynamically reconfigurable nanoscale biopolymer interfaces. Adv. Mater. 35, 2302062 (2023).
Murphy, A. R. & Kaplan, D. L. Biomedical functions of chemically-modified silk fibroin. J. Mater. Chem. 19, 6443–6450 (2009).
Matsumoto, A., Lindsay, A., Abedian, B. & Kaplan, D. L. Silk fibroin resolution properties associated to meeting and construction. Macromol. Biosci. 8, 1006–1018 (2008).
Rabotyagova, O. S., Cebe, P. & Kaplan, D. L. Protein-based block copolymers. Biomacromolecules 12, 269–289 (2011).
Wang, F., Cao, T.-T. & Zhang, Y.-Q. Impact of silk protein surfactant on silk degumming and its properties. Mater. Sci. Eng. C 55, 131–136 (2015).
Maxwell, R., Costache, M. C., Giarrosso, A., Bosques, C. & Amin, S. Optimizing interactions between soluble silk fibroin and capryl glucoside for design of a pure and high-performance co-surfactant system. Int. J. Cosmet. Sci. 43, 68–77 (2021).
Ding, B., Wan, L.-Z. & Zhang, Y.-Q. Biosafety analysis of three sodium lauryl N-amino acids synthesized from silk industrial waste in mice. J. Surfactants Deterg. 20, 1173–1187 (2017).
Kelley, F. M., Favetta, B., Regy, R. M., Mittal, J. & Schuster, B. S. Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants. Proc. Natl Acad. Sci. USA 118, e2109967118 (2021).
Linsenmeier, M. et al. The interface of condensates of the hnRNPA1 low-complexity area promotes formation of amyloid fibrils. Nat. Chem. 15, 1340–1349 (2023).
Jin, H.-J. & Kaplan, D. L. Mechanism of silk processing in bugs and spiders. Nature 424, 1057–1061 (2003).
Rockwood, D. N. et al. Supplies fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612–1631 (2011).
Wray, L. S. et al. Impact of processing on silk-based biomaterials: reproducibility and biocompatibility. J. Biomed. Mater. Res. Half B 99B, 89–101 (2011).
Pritchard, E. M., Hu, X., Finley, V., Kuo, C. Ok. & Kaplan, D. L. Impact of silk protein processing on drug supply from silk movies. Macromol. Biosci. 13, 311–320 (2013).
Tadros, T. in Encyclopedia of Colloid and Interface Science (ed. Tadros, T.) 945–962 (Springer, 2013).
Fleer, G. J., Stuart, M. A. C., Scheutjens, J. M. H. M., Cosgrove, T. & Vincent, B. in Polymers at Interfaces 27–42 (Springer, 1998).
Shanahan, M. E. R. & Possart, W. in Handbook of Adhesion Know-how (eds. da Silva, L. F. M., Oechsner, A. & Adams, R.) 1–31 (Springer, 2018).
Noolandi, J. Multiblock copolymers as polymeric surfactants: are “pancakes” higher than “dumbbells”? Macromol. Principle Simul. 1, 295–298 (1992).
Hardy, J. G. et al. Instructive conductive 3D silk foam-based bone tissue scaffolds allow electrical stimulation of stem cells for enhanced osteogenic differentiation. Macromol. Biosci. 15, 1490–1496 (2015).
Cheng, Y., Dow, A. A., Clemens, B. M. & Cirlin, E. Affect of ion mixing on the depth decision of sputter depth profiling. J. Vac. Sci. Technol. A 7, 1641–1645 (1989).
Escobar Galindo, R., Gago, R., Duday, D. & Palacio, C. In direction of nanometric decision in multilayer depth profiling: a comparative research of RBS, SIMS, XPS and GDOES. Anal. Bioanal. Chem. 396, 2725–2740 (2010).
Oswald, S., Lattner, E., Seifert, M. & Menzel, S. AES and XPS depth-profiling of annealed AlN/Ti-Al/AlN movies for high-temperature functions in SAW metallization. Surf. Interface Anal. 50, 991–995 (2018).
Trudeau, T. G. & Hore, D. Ok. Hydrophobic amino acid adsorption on surfaces of various wettability. Langmuir 26, 11095–11102 (2010).
Cho, J. et al. Excessive charge-carrier mobility of two.5 cm2 V−1 s−1 from a water-borne colloid of a polymeric semiconductor by way of good surfactant engineering. Adv. Mater. 27, 5587–5592 (2015).
Rahmanudin, A. et al. Natural semiconductors processed from synthesis-to-device in water. Adv. Sci. 7, 2002010 (2020).
Shinde, D. V. et al. Enhanced effectivity and stability of an aqueous lead-nitrate-based organometallic perovskite photo voltaic cell. ACS Appl. Mater. Interfaces 9, 14023–14030 (2017).