Silk fibroin as a surfactant for water-based nanofabrication

  • Dargaville, B. L. & Hutmacher, D. W. Water as the usually uncared for medium on the interface between supplies and biology. Nat. Commun. 13, 4222 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeSimone, J. M. Sensible approaches to inexperienced solvents. Science 297, 799–803 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nel, A. E. et al. Understanding biophysicochemical interactions on the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. et al. Biodegradable supplies and inexperienced processing for inexperienced electronics. Adv. Mater. 32, 2001591 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Choi, H.-J. & Montemagno, C. D. in Handbook of Science and Know-how Convergence (eds Bainbridge, W. S. & Roco, M. C.) 253–277 (Springer, 2016).

  • Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. Wetting and spreading. Rev. Mod. Phys. 81, 739–805 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Mohammadi, R., Wassink, J. & Amirfazli, A. Impact of surfactants on wetting of super-hydrophobic surfaces. Langmuir 20, 9657–9662 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Ok. S., Ivanova, N., Starov, V. M., Hilal, N. & Dutschk, V. Kinetics of wetting and spreading by aqueous surfactant options. Adv. Colloid Interface Sci. 144, 54–65 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, T. “Leo” & Kim, C.-J. “C. J. ” Turning a floor superrepellent even to utterly wetting liquids. Science 346, 1096–1100 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arif, S., Umar, M., Kim, S. & Kim, S. Tuning photoluminescence of organic gentle emitters by way of silk protein based mostly resonators. Curr. Choose. Photon. 3, 40–45 (2019).

    CAS 

    Google Scholar
     

  • Vinchon, P., Glad, X., Robert Bigras, G., Martel, R. & Stafford, L. Preferential self-healing at grain boundaries in plasma-treated graphene. Nat. Mater. 20, 49–54 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pu, H., Zhou, Q., Yue, L. & Zhang, Q. Investigation of oxygen plasma therapy on the machine efficiency of solution-processed a-IGZO skinny movie transistors. Appl. Surf. Sci. 283, 722–726 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lo, M.-F., Ng, T.-W., Mo, H.-W. & Lee, C.-S. Direct menace of a UV-ozone handled indium–tin-oxide substrate to the stabilities of widespread natural semiconductors. Adv. Funct. Mater. 23, 1718–1723 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Geng, H.-Z. et al. Absorption spectroscopy of surfactant-dispersed carbon nanotube movie: modulation of digital constructions. Chem. Phys. Lett. 455, 275–278 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Badmus, S. O., Amusa, H. Ok., Oyehan, T. A. & Saleh, T. A. Environmental dangers and toxicity of surfactants: overview of research, evaluation, and remediation strategies. Environ. Sci. Pollut. Res 28, 62085–62104 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Marcial-Hernandez, R. et al. Aqueous processing of natural semiconductors enabled by secure nanoparticles with built-in surfactants. Nanoscale 15, 6793–6801 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Omenetto, F. G. & Kaplan, D. L. A brand new route for silk. Nat. Photon 2, 641–643 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Omenetto, F. G. & Kaplan, D. L. New alternatives for an historic materials. Science 329, 528–531 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guidetti, G. et al. Silk supplies on the convergence of science, sustainability, healthcare, and know-how. Appl. Phys. Rev. 9, 011302 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, B. J., Bonacchini, G. E., Ostrovsky-Snider, N. A. & Omenetto, F. G. Bimodal gating mechanism in hybrid thin-film transistors based mostly on dynamically reconfigurable nanoscale biopolymer interfaces. Adv. Mater. 35, 2302062 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Murphy, A. R. & Kaplan, D. L. Biomedical functions of chemically-modified silk fibroin. J. Mater. Chem. 19, 6443–6450 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumoto, A., Lindsay, A., Abedian, B. & Kaplan, D. L. Silk fibroin resolution properties associated to meeting and construction. Macromol. Biosci. 8, 1006–1018 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rabotyagova, O. S., Cebe, P. & Kaplan, D. L. Protein-based block copolymers. Biomacromolecules 12, 269–289 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, F., Cao, T.-T. & Zhang, Y.-Q. Impact of silk protein surfactant on silk degumming and its properties. Mater. Sci. Eng. C 55, 131–136 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Maxwell, R., Costache, M. C., Giarrosso, A., Bosques, C. & Amin, S. Optimizing interactions between soluble silk fibroin and capryl glucoside for design of a pure and high-performance co-surfactant system. Int. J. Cosmet. Sci. 43, 68–77 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, B., Wan, L.-Z. & Zhang, Y.-Q. Biosafety analysis of three sodium lauryl N-amino acids synthesized from silk industrial waste in mice. J. Surfactants Deterg. 20, 1173–1187 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kelley, F. M., Favetta, B., Regy, R. M., Mittal, J. & Schuster, B. S. Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants. Proc. Natl Acad. Sci. USA 118, e2109967118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linsenmeier, M. et al. The interface of condensates of the hnRNPA1 low-complexity area promotes formation of amyloid fibrils. Nat. Chem. 15, 1340–1349 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, H.-J. & Kaplan, D. L. Mechanism of silk processing in bugs and spiders. Nature 424, 1057–1061 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rockwood, D. N. et al. Supplies fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612–1631 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wray, L. S. et al. Impact of processing on silk-based biomaterials: reproducibility and biocompatibility. J. Biomed. Mater. Res. Half B 99B, 89–101 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Pritchard, E. M., Hu, X., Finley, V., Kuo, C. Ok. & Kaplan, D. L. Impact of silk protein processing on drug supply from silk movies. Macromol. Biosci. 13, 311–320 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tadros, T. in Encyclopedia of Colloid and Interface Science (ed. Tadros, T.) 945–962 (Springer, 2013).

  • Fleer, G. J., Stuart, M. A. C., Scheutjens, J. M. H. M., Cosgrove, T. & Vincent, B. in Polymers at Interfaces 27–42 (Springer, 1998).

  • Shanahan, M. E. R. & Possart, W. in Handbook of Adhesion Know-how (eds. da Silva, L. F. M., Oechsner, A. & Adams, R.) 1–31 (Springer, 2018).

  • Noolandi, J. Multiblock copolymers as polymeric surfactants: are “pancakes” higher than “dumbbells”? Macromol. Principle Simul. 1, 295–298 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Hardy, J. G. et al. Instructive conductive 3D silk foam-based bone tissue scaffolds allow electrical stimulation of stem cells for enhanced osteogenic differentiation. Macromol. Biosci. 15, 1490–1496 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Y., Dow, A. A., Clemens, B. M. & Cirlin, E. Affect of ion mixing on the depth decision of sputter depth profiling. J. Vac. Sci. Technol. A 7, 1641–1645 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Escobar Galindo, R., Gago, R., Duday, D. & Palacio, C. In direction of nanometric decision in multilayer depth profiling: a comparative research of RBS, SIMS, XPS and GDOES. Anal. Bioanal. Chem. 396, 2725–2740 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oswald, S., Lattner, E., Seifert, M. & Menzel, S. AES and XPS depth-profiling of annealed AlN/Ti-Al/AlN movies for high-temperature functions in SAW metallization. Surf. Interface Anal. 50, 991–995 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Trudeau, T. G. & Hore, D. Ok. Hydrophobic amino acid adsorption on surfaces of various wettability. Langmuir 26, 11095–11102 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, J. et al. Excessive charge-carrier mobility of two.5 cm2 V−1 s−1 from a water-borne colloid of a polymeric semiconductor by way of good surfactant engineering. Adv. Mater. 27, 5587–5592 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahmanudin, A. et al. Natural semiconductors processed from synthesis-to-device in water. Adv. Sci. 7, 2002010 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shinde, D. V. et al. Enhanced effectivity and stability of an aqueous lead-nitrate-based organometallic perovskite photo voltaic cell. ACS Appl. Mater. Interfaces 9, 14023–14030 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *