Rational design of ROS scavenging and fluorescent gold nanoparticles to ship siRNA to enhance plant resistance to Pseudomonas syringae | Journal of Nanobiotechnology

  • Rodríguez-Puerto C, Chakraborty R, Singh R, Rocha-Loyola P, Rojas CM. The Pseudomonas syringae sort III effector HopG1 triggers necrotic cell demise that’s attenuated by AtNHR2B. Sci Rep. 2022;12:5388.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christou P, Twyman RM. The potential of genetically enhanced vegetation to deal with meals insecurity. Nutr Res Rev. 2004;17:23–42.

    Article 
    PubMed 

    Google Scholar
     

  • Dalakouras A, Wassenegger M, Dadami E, Ganopoulos I, Pappas ML, Papadopoulou Ok. Genetically modified organism-free RNA interference: exogenous utility of rna molecules in vegetation. Plant Physiol. 2020;182:38–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Unusual RN, Scott PR. Plant illness: a menace to world meals safety. Annu Rev Phytopathol. 2005;43:83–116.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poxton IR. Molecular methods within the analysis and administration of infectious ailments: have they got a job in bacteriology? Med Prin Pract. 2008;14:20–6.

    Article 

    Google Scholar
     

  • Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Grey A, et al. World burden of bacterial antimicrobial resistance in 2019: a scientific evaluation. Lancet. 2022;399:629–55.

    Article 
    CAS 

    Google Scholar
     

  • Lopez-Gomollon S, Baulcombe DC. Roles of RNA silencing in viral and non-viral plant immunity and within the crosstalk between illness resistance techniques. Nat Rev Mol Cell Biol. 2022;23:645–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tilahun T, Bezie Y, Kerisew B, Taye M. The applying of antisense expertise for crop enchancment: A evaluate. Tejada Ethical M, editor. Cogent Meals & Agriculture. 2021;7:1910157.

  • Li S, Li M, Li Z, Zhu Y, Ding H. Results of the silencing of CmMET1 by RNA interference in chrysanthemum (Chrysanthemum morifolium). Plant Biotechnol. 2019;13:63–72.

    Article 

    Google Scholar
     

  • Singh N, Mukherjee SK, Rajam MV. Silencing of the ornithine decarboxylase gene of Fusarium oxysporum f. sp. lycopersici by host-induced RNAi confers resistance to fusarium wilt in tomato. Plant Mol Biol Rep. 2020;38:419–29.

    Article 
    CAS 

    Google Scholar
     

  • Mohr SE, Perrimon N. RNAi screening: new approaches, understandings and organisms. Wiley Interdiscip Rev RNA. 2012;3:145–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das PR, Sherif SM. Utility of exogenous dsrnas-induced RNAi in agriculture: challenges and triumphs. Entrance Plant Sci. 2020;11:946.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu H, Li Z. Latest advances in nano-enabled agriculture for enhancing plant efficiency. Crop J. 2022;10:1–12.

    Article 

    Google Scholar
     

  • Demirer GS, Zhang H, Goh NS, González-Grandío E, Landry MP. Carbon nanotube–mediated DNA supply with out transgene integration in intact vegetation. Nat Protoc. 2019;14:2954–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwak S-Y, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev Ok, et al. Chloroplast-selective gene supply and expression in planta utilizing chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol. 2019;14:447–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thagun C, Horii Y, Mori M, Fujita S, Ohtani M, Tsuchiya Ok, et al. Non-transgenic gene modulation through spray supply of nucleic acid/peptide complexes into plant nuclei and chloroplasts. ACS Nano. 2022;16:3506–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, et al. Clay nanosheets for topical supply of RNAi for sustained safety towards plant viruses. Nat Vegetation. 2017;3:16207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Li J, Du M, Deng G, Track Z, Han H. Environment friendly gene silencing in intact plant cells utilizing siRNA delivered by practical graphene oxide nanoparticles. Angew Chem Int Edit. 2022;61:e202210014.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Li Y, Zhang B, Gao X, Shi M, Zhang S, et al. Functionalized carbon dot-delivered RNA nano fungicides as superior instruments to regulate phytophthora pathogens by plant RdRP1 mediated spray-induced gene silencing. Adv Funct Mater. 2023;33:2213143.

    Article 
    CAS 

    Google Scholar
     

  • Zhang H, Cao Y, Xu D, Goh NS, Demirer GS, Cestellos-Blanco S, et al. Gold-nanocluster-mediated supply of siRNA to intact plant cells for environment friendly gene knockdown. Nano Lett. 2021;21:5859–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei W, An Z, Zhang B, Wu Q, Gong W, Li J, et al. Development of gold-siRNANPR1 nanoparticles for efficient and fast silencing of NPR1 in Arabidopsis thaliana. RSC Adv. 2020;10:19300–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu P, Li J, Zhang L, Chen Ok, Shao J, Zheng B, et al. Polyethyleneimine-coated MXene quantum dots enhance cotton tolerance to Verticillium Dahliae by sustaining ROS homeostasis. Nat Commun. 2023;14:7392.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avellan A, Yun J, Zhang Y, Spielman-Solar E, Unrine JM, Thieme J, et al. Nanoparticle measurement and coating chemistry management foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano. 2019;13:5291–305.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia X, Qin H, Bose SK, Liu T, He J, Xie S, et al. Proteomics evaluation reveals the protection priming impact of chitosan oligosaccharides in ArabidopsisPst DC3000 interplay. Plant Physiol Biochem. 2020;149:301–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB. Modulation of antioxidant equipment in α-tocopherol-enriched transgenic Brassica juncea vegetation tolerant to abiotic stress situations. Protoplasma. 2013;250:1079–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Liu J, Fu C, Khan MN, Hu J, Zhao F, et al. CeO2 nanoparticles modulate Cu–Zn superoxide dismutase and lipoxygenase-IV isozyme actions to alleviate membrane oxidative harm to enhance rapeseed salt tolerance. Environ Sci: Nano. 2022;9:1116–32.

    CAS 

    Google Scholar
     

  • Li Y, Hu J, Qi J, Zhao F, Liu J, Chen L, et al. Enchancment of leaf Ok+ retention is a shared mechanism behind CeO2 and Mn3O4 nanoparticles improved rapeseed salt tolerance. Stress Biology. 2022;2:46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rezazad Bari L, Ghanbari A, Darvishzadeh R, Giglou MT, Baneh HD. Discernment of grape rootstocks base on their response to salt stress utilizing chosen traits together with chemometric instruments. Meals Chem. 2021;365:130408.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogbaga CC, Athar H-R. The necessity to incorporate quick and sluggish rest kinetic parameters into photosynthesis-measuring techniques. Sci Afr. 2019;4:e00106.


    Google Scholar
     

  • Bao S, Yang W, Wang Y, Yu Y, Solar Y, Li Ok. PEI grafted amino-functionalized graphene oxide nanosheets for ultrafast and excessive selectivity elimination of cr(VI) from aqueous options by adsorption mixed with discount: behaviors and mechanisms. Chem Eng J. 2020;399:125762.

    Article 
    CAS 

    Google Scholar
     

  • He H, Xie C, Ren J. Nonbleaching fluorescence of gold nanoparticles and its purposes in most cancers cell imaging. Anal Chem. 2008;80:5951–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee S-Y, Huh MS, Lee S, Lee SJ, Chung H, Park JH, et al. Stability and mobile uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for environment friendly gene silencing. J Management Launch. 2010;141:339–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ziebarth JD, Kennetz DR, Walker NJ, Wang Y. Structural comparisons of PEI/DNA and PEI/siRNA complexes revealed with molecular dynamics simulations. J Phys Chem B. 2017;121:1941–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Jiang P, Ge G. Synthesis of small water-soluble gold nanoparticles and their chemical modification into hole buildings and luminescent nanoclusters. Colloid Surf A. 2011;384:62–7.

    Article 
    CAS 

    Google Scholar
     

  • Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, et al. Non-viral nanoparticles for RNA interference: rules of design and sensible pointers. Adv Drug Deliv. 2021;174:576–612.

    Article 
    CAS 

    Google Scholar
     

  • Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, et al. Nanodelivery of nucleic acids. Nat Rev Strategies Primers. 2022;2:1–21.

    Article 

    Google Scholar
     

  • Jat SK, Bhattacharya J, Sharma MK. Nanomaterial primarily based gene supply: a promising technique for plant genome engineering. J Mater Chem B. 2020;8:4165–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sattelmacher B. The apoplast and its significance for plant mineral vitamin. New Phytol. 2001;149:167–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang G, Liu Y, Hui Y, Tengjisi, Chen D, Weitz DA, et al. Implications of quenching-to-dequenching change in quantitative cell uptake and biodistribution of dye-labeled nanoparticles. Angew Chem Int Edit. 2021;60:15426–35.

    Article 
    CAS 

    Google Scholar
     

  • Zhang H, Goh NS, Wang JW, Pinals RL, González-Grandío E, Demirer GS, et al. Nanoparticle mobile internalization will not be required for RNA supply to mature plant leaves. Nat Nanotechnol. 2022;17:197–205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee D, Lal NK, Lin Z-JD, Ma S, Liu J, Castro B, et al. Regulation of reactive oxygen species throughout plant immunity by phosphorylation and ubiquitination of RBOHD. Nat Commun. 2020;11:1838.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu H, Tito N, Giraldo JP. Anionic cerium oxide nanoparticles shield plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano. 2017;11:11283–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Gu J, Hu J, Ma H, Tao Y, Li G, et al. Use of Mn3O4 nanozyme to enhance cotton salt tolerance. Plant Biotechnol J. 2023;21:1935–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao L, Bai T, Wei H, Gardea-Torresdey JL, Keller A, White JC. Nanobiotechnology-based methods for enhanced crop stress resilience. Nat Meals. 2022;3:829–36.

    Article 
    PubMed 

    Google Scholar
     

  • Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol. 2022;23:663–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rühle T, Reiter B, Leister D. Chlorophyll fluorescence video imaging: a flexible software for figuring out elements associated to photosynthesis. Entrance Plant Sci. 2018;9:55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laisk A, Oja V, Eichelmann H, Dall’Osto L. Motion spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1. Biochim Biophys Acta Bioenerg. 2014;1837:315–25.

    Article 
    CAS 

    Google Scholar
     

  • Ghosh D, Mohapatra S, Dogra V. Enhancing photosynthetic effectivity by modulating non-photochemical quenching. Tendencies Plant Sci. 2023;28:264–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murchie EH, Lawson T. Chlorophyll fluorescence evaluation: a information to good follow and understanding some new purposes. J Exp Bot. 2013;64:3983–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buschmann C. Photochemical and non-photochemical quenching coefficients of the chlorophyll fluorescence: comparability of variation and limits. Photosynthetica. 1999;37:217–24.

    Article 
    CAS 

    Google Scholar
     

  • Peng J, Feng Y, Wang X, Li J, Xu G, Phonenasay S, et al. Results of nitrogen utility charge on the photosynthetic pigment, leaf fluorescence traits, and yield of indica hybrid rice and their interrelations. Sci Rep. 2021;11:7485.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Figueroa FL, Celis-Plá PSM, Martínez B, Korbee N, Trilla A, Arenas F. Yield losses and electron transport charge as indicators of thermal stress in Fucus serratus (Ochrophyta). Algal Res. 2019;41:101560.

    Article 

    Google Scholar
     

  • Zhang B, Huang S, Meng Y, Chen W. Gold nanoparticles (AuNPs) can quickly ship synthetic microRNA (AmiRNA)-ATG6 to silence ATG6 expression in Arabidopsis. Plant Cell Rep. 2023;42:1191–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Guo Z, Hao L, Shi X, Yan S, Yang H. Polyethyleneimine-AuNPs-copper protoporphyrin nanocomposite: a novel biosensor for delicate detection of hydrogen peroxide in human serum. J Stable State Electrochem. 2019;23:2551–8.

    Article 
    CAS 

    Google Scholar
     

  • Ayalew ZM, Guo X, Zhang X. Synthesis and utility of polyethyleneimine (PEI)-based composite/nanocomposite materials for heavy metals elimination from wastewater: a crucial evaluate. J Hazard Mater Adv. 2022;8:100158.

    Article 
    CAS 

    Google Scholar
     

  • Solar X, Dong S, Wang E. One-step polyelectrolyte-based path to well-dispersed gold nanoparticles: synthesis and perception. Mater Chem Phys. 2006;96:29–33.

    Article 
    CAS 

    Google Scholar
     

  • Wu Z, Jin R. On the ligand’s position within the fluorescence of gold nanoclusters. Nano Lett. 2010;10:2568–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu Z, Biswas A, Zhao M, Tang Y. Tailoring nanocarriers for intracellular protein supply. Chem Soc Rev. 2011;40:3638–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Wang W, Zhou J. Position of small RNAs within the interplay between Arabidopsis and Pseudomonas syringae. Entrance Biol. 2011;6:462–7.

    Article 
    CAS 

    Google Scholar
     

  • Huang C, Wang H, Hu P, Hamby R, Jin H. Small RNAs – large gamers in plant-microbe interactions. Cell Host Microbe. 2019;26:173–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong X, Yang M, Le BH, He W, Hou Y. The grasp position of siRNAs in plant immunity. Mol Plant Pathol. 2022;23:1565–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boccara M, Sarazin A, Thiébeauld O, Jay F, Voinnet O, Navarro L, et al. The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity by the post-transcriptional management of illness resistance genes. PLoS Pathog. 2014;10:e1003883.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canto-Pastor A, Santos BAMC, Valli AA, Summers W, Schornack S, Baulcombe DC. Enhanced resistance to bacterial and oomycete pathogens by brief tandem goal mimic RNAs in tomato. Proc Natl Acad Sci U S A. 2019;116:2755–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang P, Zhao F-J, Kopittke PM. Engineering crops with out genome integration utilizing nanotechnology. Tendencies Plant Sci. 2019;24:574–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang JW, Grandio EG, Newkirk GM, Demirer GS, Butrus S, Giraldo JP, et al. Nanoparticle-mediated genetic engineering of vegetation. Mol Plant. 2019;12:1037–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Demirer GS, Zhang H, Ye T, Goh NS, Aditham AJ, et al. DNA nanostructures coordinate gene silencing in mature vegetation. Proc Natl Acad Sci U S A. 2019;116:7543–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang X, Meng X, Zhang J, Xia M, Cao S, Tang X et al. AtWRKY1 negatively regulates the response of Arabidopsis thaliana to Pst DC3000. Plant Physiol Biochem. 2021;166:799–806.

  • Ishiga Y, Uppalapati SR, Ishiga T, Elavarthi S, Martin B, Bender CL. Involvement of coronatine-inducible reactive oxygen species in bacterial speck illness of tomato. Plant Sign Behav. 2009;4:237–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahiwal S, Pahuja S, Pandey GK, Evaluate. Structural-functional relationship of WRKY transcription elements: unfolding the position of WRKY in vegetation. Int J Biol Macromol. 2024;257:128769.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu H, Shabala L, Shabala S, Giraldo JP. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environ Sci: Nano. 2018;5:1567–83.

    CAS 

    Google Scholar
     

  • Li M, Gao L, White JC, Haynes CL, O’Keefe TL, Rui Y, et al. Nano-enabled methods to boost organic nitrogen fixation. Nat Nanotechnol. 2023;18:688–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Torres Zabala M, Littlejohn G, Jayaraman S, Studholme D, Bailey T, Lawson T, et al. Chloroplasts play a central position in plant defence and are focused by pathogen effectors. Nat Vegetation. 2015;1:1–10.

    Article 

    Google Scholar
     

  • Ishiga Y, Uppalapati SR, Ishiga T, Elavarthi S, Martin B, Bender CL. The phytotoxin coronatine induces light-dependent reactive oxygen species in tomato seedlings. New Phytol. 2009;181:147–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *