Cost-transfer contacts for the measurement of correlated states in high-mobility WSe2

  • Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mak, Okay. F. & Shan, J. Semiconductor moiré supplies. Nat. Nanotechnol. 17, 686–695 (2022).

  • Shi, L.-k, Ma, J. & Track, J. C. W. Gate-tunable flat bands in van der Waals patterned dielectric superlattices. 2D Mater. 7, 015028 (2019).

    Article 

    Google Scholar
     

  • Larentis, S. et al. Giant efficient mass and interaction-enhanced Zeeman splitting of Okay-valley electrons in MoSe2. Phys. Rev. B 97, 201407 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Q. et al. Odd- and even-denominator fractional quantum Corridor states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous Corridor impact from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Corridor states in twisted MoTe2. Nature 622, 63–68 (2023).

  • Zeng, Y. et al. Thermodynamic proof of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, H. et al. Remark of fractionally quantized anomalous Corridor impact. Nature 622, 74–79 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, F. et al. Remark of integer and fractional quantum anomalous Corridor results in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    CAS 

    Google Scholar
     

  • Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, P. X. et al. Good Coulomb drag in a dipolar excitonic insulator. Preprint at https://arxiv.org/abs/2309.14940 (2023).

  • Qi, R. et al. Good Coulomb drag and exciton transport in an excitonic insulator. Preprint at https://arxiv.org/abs/2309.15357 (2023).

  • Allain, A., Kang, J., Banerjee, Okay. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. & Chhowalla, M. Making clear electrical contacts on 2D transition steel dichalcogenides. Nat. Rev. Phys. 4, 101–112 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Approaching the Schottky–Mott restrict in van der Waals steel–semiconductor junctions. Nature 557, 696–700 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Movva, H. C. P. et al. Excessive-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 9, 10402–10410 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, Y. et al. Transferred through contacts as a platform for preferrred two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).

    Article 

    Google Scholar
     

  • Xu, S. et al. Common low-temperature ohmic contacts for quantum transport in transition steel dichalcogenides. 2D Mater. 3, 021007 (2016).

    Article 

    Google Scholar
     

  • Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borah, A., Nipane, A., Choi, M. S., Hone, J. & Teherani, J. T. Low-resistance p-type ohmic contacts to ultrathin WSe2 by utilizing a monolayer dopant. ACS Appl. Electron. Mater. 3, 2941–2947 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cai, X. et al. Bridging the hole between atomically skinny semiconductors and steel leads. Nat. Commun. 13, 1777 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mashhadi, S. et al. Spin-split band hybridization in graphene proximitized with α-RuCl3 nanosheets. Nano Lett. 19, 4659–4665 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rizzo, D. J. et al. Cost-transfer plasmon polaritons at graphene/α-RuCl3 interfaces. Nano Lett. 20, 8438–8445 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Modulation doping through a two-dimensional atomic crystalline acceptor. Nano Lett. 20, 8446–8452 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. Two-step flux synthesis of ultrapure transition-metal dichalcogenides. ACS Nano 17, 16587–16596 (2023).

  • Cho, Y. et al. Modulation doping of single-layer semiconductors for improved contact at steel interfaces. Nano Lett. 22, 9700–9706 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haratipour, N., Namgung, S., Oh, S.-H. & Koester, S. J. Elementary limits on the subthreshold slope in Schottky supply/drain black phosphorus field-effect transistors. ACS Nano 10, 3791–3800 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Transferred steel gate to 2D semiconductors for sub-1 V operation and close to preferrred subthreshold slope. Sci. Adv. 7, eabf8744 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S. S. (ed.) Semiconductor Bodily Electronics (Springer, 2006).

  • Huang, Y., Shklovskii, B. I. & Zudov, M. A. Scattering mechanisms in state-of-the-art GaAs/AlGaAs quantum wells. Phys. Rev. Mater. 6, L061001 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Joe, A. Y. et al. Transport research of charge-carrier scattering in monolayer WSe2. Phys. Rev. Lett. 132, 056303 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, N. & Jena, D. Cost scattering and mobility in atomically skinny semiconductors. Phys. Rev. X 4, 011043 (2014).

    CAS 

    Google Scholar
     

  • Shih, E.-M. et al. Spin-selective magneto-conductivity in WSe2. Preprint at https://arxiv.org/abs/2307.00446 (2023).

  • Movva, H. C. P. Magnetotransport Research of Tungsten Diselenide Holes. PhD thesis, The Univ. of Texas at Austin (2018).

  • Kamburov, D., Baldwin, Okay. W., West, Okay. W., Shayegan, M. & Pfeiffer, L. N. Interaction between quantum properly width and interface roughness for electron transport mobility in GaAs quantum wells. Appl. Phys. Lett. 109, 232105 (2016).

    Article 

    Google Scholar
     

  • Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Dysfunction in van der Waals heterostructures of 2D supplies. Nat. Mater. 18, 541–549 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau stage degeneracy, efficient mass, and adverse compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Chung, Y. J. et al. Extremely-high-quality two-dimensional electron techniques. Nat. Mater. 20, 632–637 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, Y. J. et al. File-quality GaAs two-dimensional gap techniques. Phys. Rev. Mater. 6, 034005 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Falson, J. & Kawasaki, M. A evaluation of the quantum Corridor results in MgZnO/ZnO heterostructures. Rep. Prog. Phys. 81, 056501 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kravchenko, S. V., Kravchenko, G. V., Furneaux, J. E., Pudalov, V. M. & D’Iorio, M. Potential metal-insulator transition at B=0 in two dimensions. Phys. Rev. B 50, 8039–8042 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Chung, Y. J. et al. Multivalley two-dimensional electron system in an AlAs quantum properly with mobility exceeding 2 × 106 cm2 V−1 s−1. Phys. Rev. Mater. 2, 071001 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Falson, J. et al. Competing correlated states across the zero-field Wigner crystallization transition of electrons in two dimensions. Nat. Mater. 21, 311–316 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahn, S. & Das Sarma, S. Density-tuned efficient metal-insulator transitions in two-dimensional semiconductor layers: Anderson localization or Wigner crystallization. Phys. Rev. B 107, 195435 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Drummond, N. D. & Wants, R. J. Part diagram of the low-density two-dimensional homogeneous electron fuel. Phys. Rev. Lett. 102, 126402 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Andrei, E. Y. et al. Remark of a magnetically induced Wigner strong. Phys. Rev. Lett. 60, 2765–2768 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polshyn, H. et al. Quantitative transport measurements of fractional quantum Corridor power gaps in edgeless graphene units. Phys. Rev. Lett. 121, 226801 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulze-Wischeler, F., Mariani, E., Hohls, F. & Haug, R. J. Direct measurement of the g issue of composite fermions. Phys. Rev. Lett. 92, 156401 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pack, J. Knowledge associated to ‘Cost-transfer contacts for the measurement of correlated states in monolayer WSe2’. Zenodo https://doi.org/10.5281/zenodo.10866111 (2024).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *